

Revolvo Family

be reproduced or transmitted in any form of by any means, electronic or mechanical, including by any information storage and retrieval system without permission in writing from Revolvo Ltd.

Revolvo's policy of continued product development means we reserve the right to modify any product or specification without prior notice.

Every effort has been made to ensure that the information contained within this catalogue is correct. However, no liability can be accepted for any loss or damage whether direct, indirect or consequential arising from using information contained in this publication.

SRB, A Division of Revolvo Ltd, Queens Cross, Dudley, West Midlands, DY1 1QW
Tel: 01384 844250 Fax: 01384 844255
e-mail: sales.srb@revolvo.com web: www.revolvo.com

Contents

Introduction	Page	3
Advantages of Split Roller Bearings	Page	5
Application and Industries	Page	6
Features and Benefits	Page	7
Standard Unit Anatomy	Page	8
Quick Reference Guide	Page	9
Bearing Types	Page	11
Support Types	Page	12
Range Comparison	Page	13
Bearing Selection	Page	14
Axial Load Considerations	Page	18
Support Loads	Page	20
Bearing Frequencies	Page	21
Shaft Considerations	Page	23
Sealing Arrangements	Page	24
Bearing Lubrication	Page	27
Assembly and Maintenance	Page	29
Shipping Weights	Page	36
Light Series Product	Page	38
Medium Series Product	Page	52
Heavy Series Product	Page	64
Triple Labyrinth Housing and Seal References	Page	70
Specialised Bearings from SRB	Page	71
SN/SD Product	Page	74

Case Studies

Pelletiser Drive Problem	Page	37
Zambesi Rapid Water Ride	Page	51
High Capacity Units from SRB	Page	63
Replacement Bearings at Ibstock Brick	Page	73

Introduction Taking the Initiative

In today's demanding industrial environment, specialist technology is, more than ever, key to improved efficiency, productivity and ultimately profitability. SRB, is increasingly seen as a company who routinely challenge technological boundaries.

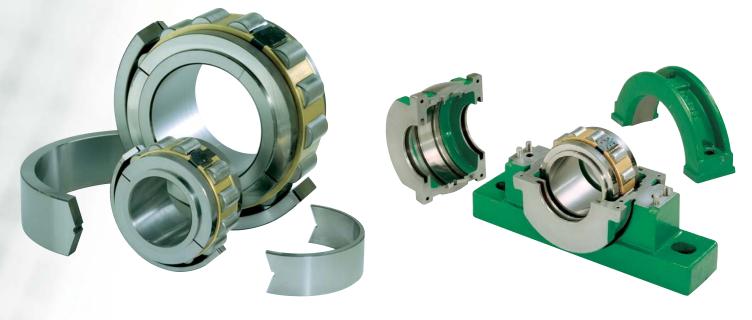
Rapid response and flexibility are provided from a production facility manufacturing not only split roller bearing assemblies but also cutting edge products for aerospace and motor sport. The unique relationship between manufacturer and distributors combined with innovative cellular manufacturing and modular stocking offer unparalleled availability.

From concept to design, design to production, and then throughout the life cycle of the unit no other split bearing manufacturer works so hard to exceed your expectations.

Performance

SRB products have been designed and developed to maximise service life and minimise maintenance effort.

SRB bearings have machined brass cages with unique single piece clips as standard, rolling elements are profiled to minimise damaging edge stresses and provide optimum rolling contact.


All supports and housings incorporate pry slots and doweled machined joints for easy separation. Supports are manufactured from high strength cast iron and feature double webs and thick sections; product life is thus enhanced due to high rigidity and inherent strength.

Innovation in application

The benefits of totally split-to-the-shaft bearing assemblies are long established, subsequent savings in production and maintenance are well documented.

However, split roller bearings are today being selected for an ever-wider range of applications. Additional features and benefits available from the SRB range allow our products to run faster, take higher loads, at higher temperatures and in increasingly hostile environments.

Optimisation of plant efficiency is the goal of today's maintenance engineer. The application of reliable products offering real savings, derived from increased mean time between failures, which widens periods between planned shutdowns, and the elimination of unplanned downtime are becoming a reality when utilising advanced components accommodating split options.

Innovation in Service

Producing products that push the boundaries of performance is only the beginning. SRB recognises that users and specifiers of split roller bearings demand logistical, technical and after sales support.

Experienced application engineering support is available to assist customers with concepts through consultation, commissioning, training, supply and post installation support. Cellular manufacture, modular stocking, logistical expertise and unique distributor/manufacturer interfaces provide excellent availability of product in the right place at the right time.

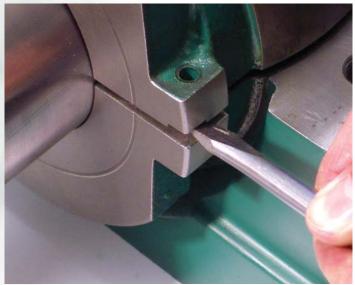
A team of design engineers provides bespoke solutions on state of the art CAD systems. Close liaison with our customers allows SRB to continuously refine and improve products, production processes and service procedures. This enables ongoing development allowing SRB to provide a bench mark in technical support.

Advantages of Split Roller Bearings

Split Roller Bearings are essential in applications involving limited access and are highly cost effective where down time due to change-outs results in significant production losses.

Split Roller Bearings are completely split to the shaft. Installation and inspection times are therefore dramatically reduced. Additionally the time saved and costs eliminated by not having to remove ancillary equipment results in even higher potential savings.

Inspection Simplified


No matter what the size or type of split roller bearing, inspection is straight forward. Simply remove the support cap and the top half of the housing and all bearing parts become visible and accessible.

As a result considerable numbers of man-hours can be saved during planned maintenance, further adding to the potential cost savings available.

Short Term Payback, Long Term Benefits.

Though it would be easy to cite examples where the use of split bearings results in spectacular savings, the truth of the matter is that savings of a significant amount can be made in almost any application. Even modest savings can be enough to justify the use of split bearings. Depending on the application, down times for replacement of split bearings can be a small fraction of those required for solid bearings. This yields savings in both maintenance manhours and lost production.

When such cost savings are taken into account at the bearing selection stage, the case for SRB split roller bearings becomes irrefutable.

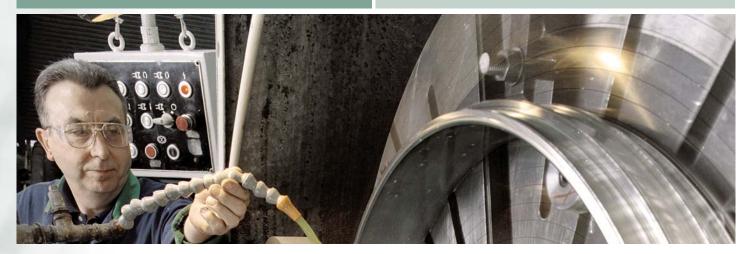
Further Savings

Even in situations where SRB bearings are used to replace other split bearing brands the potential for savings exists. Through the use of machined brass cages as standard, inclusion of profiled rolling elements and the incorporation of high-grade materials for housings and supports, SRB bearings have the capability to extend service life leading to a reduction in bearing consumption.

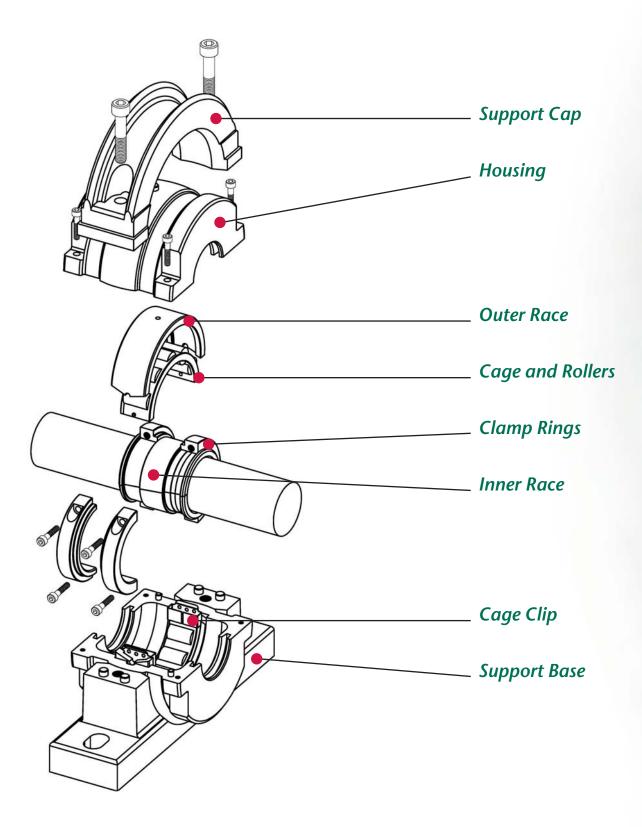
Applications and Industries

The key benefit of split roller bearings is the savings that can be made in relation to reducing downtime. This is an advantage which can be utilised in any industry. Along with our distributors throughout the world, SRB have a proactive approach to market evolution and are constantly identifying and developing new applications for split roller bearings. SRB continue to service and supply a wide range of Industries and associated applications including:

- Air Movement
- Cement
- Conveyor Systems
- Metal Processing
- Mining
- Power Generation
- Quarrying
- Sugar
- Timber
- Manufacturing

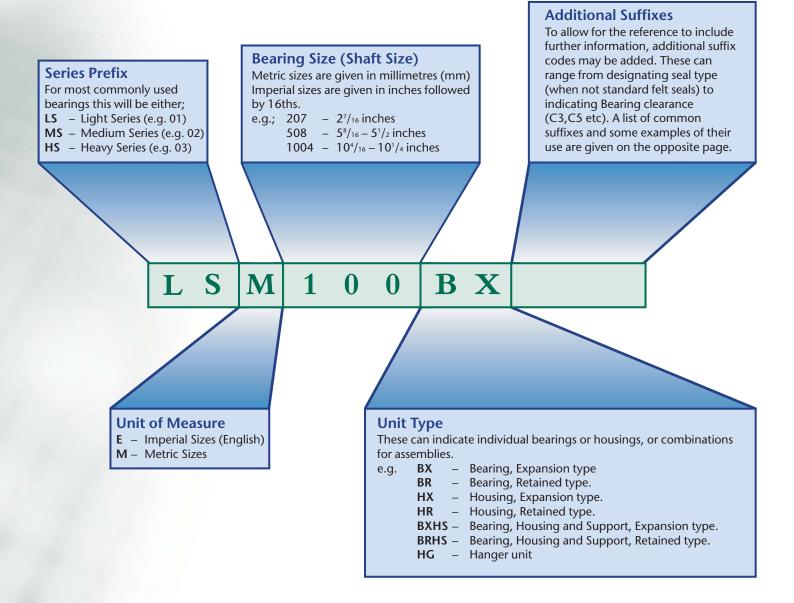


Features and Benefits


Features	Benefits
All components are totally split to the shaft	Quick and easy installation. Substantial reduction in downtime compared to replacement of solid bearings
Support caps and housing halves are quickly removed	Easy visual inspection to assess the condition of the bearing (during planned maintenance)
Replacement bearing interchangeability with existing housing	Simple and economic bearing replacement
Unit accommodates initial misalignment	Simplifies installation of associated equipment
Machined brass cage as standard	Enhanced ability to accommodate higher speeds and temperatures
Innovative cage clip design	Clips retained on one cage half during assembly and disassembly
250 Grade cast iron to BS EN1561 : 1997	Strength and durability

Profiled rolling elements

Minimises damaging edge stresses



Standard Unit Anatomy

Quick Reference Guide

In order to provide our customers with clear and concise labelling, SRB have endeavoured to keep things simple when creating references. The following should cover the majority of ordering situations, however, as always, your local SRB distributor or SRB Technical Services will be pleased to provide further assistance if required.

Typical Examples

LSM50BR

Light Series 50mm Retained Bearing

LSE108BXH

Light Series 1½ inch Expansion Bearing with Housing

MSM100HR

Medium Series 100mm Retained Housing

MSE200BXHS

Medium Series 2 inch Expansion Bearing with Housing and Support

LSM75BXHG

Light Series 75mm Expansion Bearing in Hanger Unit

Series Prefixes

LSM	Light Series Metric
LSE	Light Series Imperial
MSM	Medium Series Metric
MSE	Medium Series Imperial
HSM	Heavy Series Metric
HSE	Heavy Series Imperial
XSM	Tubular Strander Series Metric
XSE	Tubular Strander Series Imperial
ССМ	Water Cooled Series Metric
CCE	Water Cooled Series Imperial

Type References

вх	Expansion Bearing
BR	Retained Bearing
НХ	Expansion Housing
HR	Retained Housing
HG	Hanger Housing
BXH	Expansion Bearing with Housing
BRH	Retained Bearing with Housing
BXHG	Expansion Bearing with Hanger
BXHS	Expansion Bearing with Housing and Support
BRHS	Retained Bearing with Housing and Support
BXHF	Expansion Bearing with Housing and Flange
BRHF	Retained Bearing with Housing and Flange
BXHTT	Expansion Bearing with Housing and Tension Type Take Up
BRHTT	Retained Bearing with Housing and Tension Take Up
BXHTP	Expansion Bearing with Housing and Pull Type Take Up
BRHTP	Retained Bearing with Housing and Pull Type Take Up

Examples of Additional Suffixes

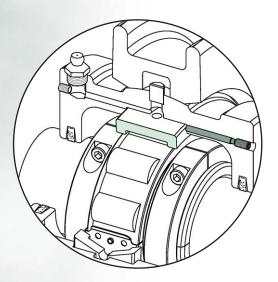
AF	Axial Float
AP	Air Purge
ATL	Aluminium Triple Labyrinth
BEM	Base Ends Machined
BL	Brass Label
BOEC	Bolt On End Cover
C2,C3,C5	Bearing Clearance (ISO)
СН	Inner Race bore Chamfer with size eg CH6mm, CH11mm
EC	End Cover
ECTL	End Cover for Triple Labyrinth Bore
ES	Electrical Specification
FC	Full Compliment of rollers
GE	Grease Escape
HTPS	High Temperature Packing Seal
LSR	Laminar Seal Rings
NTL	Nitrile Triple Labyrinth
ОВ	Overbored with size eg OB160mm
OTL	Overbored Triple Labyrinth Seal
RSS	Nitrile Single Lip Seal
\$1,\$2,\$3	Designation for Tempered Bearings (ISO)
SFO	Swivel fit, Zero clearance.
SLO	Single Lipped Outer
SLUB	Spherical Lubrication
TE	Temperature Probe hole
WSRP	Single Lip Seal with Garter Spring and Retaining Plate
XAR	Extended Antirotation Pin

Light Series

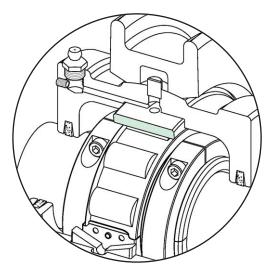
	9-				
mm	inch	Support	Flange	Take	Ups
35 to 40	1 ³ / ₁₆ to 1 ¹ / ₂	S01	F01	TT01	TP01
45 to 50	111/16 to 2	S02	F02	TT02	TP02
60 to 65	2 ³ / ₁₆ to 2 ¹ / ₂	S03	F03	TT03	TP03
70 to 75	211/16 to 3	S04	F04	TT04	TP04
80 to 90	3 ³ / ₁₆ to 3 ¹ / ₂	S05	F05	TT05	TP05
100 to 105	3 ¹¹ / ₁₆ to 4	S06	F06	TT06	TP06
110 to 115	4 ³ / ₁₆ to 4 ¹ / ₂	S07	F07	TT07	TP07
120 to 130	4 ¹¹ / ₁₆ to 5	S08	F08	TT08	TP08
135 to 140	5 ³ / ₁₆ to 5 ¹ / ₂	S09	F09	TT09	TP09
150 to 155	5 ¹¹ / ₁₆ to 6	S10	F10	TT10	TP10
160	6 ⁷ /16 to 6 ¹ /2	S11	F11		
170 to 180	6 ¹¹ /16 to 7	S12	F12		
190 to 200	71/4 to 8	S13	F13		
220 to 230	8 ¹ / ₂ to 9	S14	F14		
240 to 250	9 ¹ / ₂ to 10	S15	F15		
260 to 280	10 ¹ / ₂ to 11	S16	F16		
300	11 ¹ / ₂ to 12	S17			
320 to 330	$12^{1}/_{2}$ to 13	S18			
340 to 350	14	S19			
360 to 380	15	S20			
400	16	S21			
420	17	S22			
440 to 460	18	S23			
480	19	S24			
500	20	S25			
530	21	S26			
560	22	S27			
580	23	S28			
600	24	S29			

	Medi	um Seri	ies		
mm	inch	Support	Flange	Take	Ups
45 to 50	1 ¹¹ /16 to 2	S03	F03	TT03	TP03
60 to 65	2 ³ / ₁₆ to 2 ¹ / ₂	S04	F04	TT04	TP04
70 to 75	211/16 to 3	S05	F05	TT05	TP05
80 to 90	3 ³ / ₁₆ to 3 ¹ / ₂	S06	F06	TT06	TP06
100 to 105	3 ¹¹ / ₁₆ to 4	S07	F07	TT07	TP07
110 to 115	4 ³ / ₁₆ to 4 ¹ / ₂	S08	F08	TT08	TP08
120 to 130	4 ¹¹ / ₁₆ to 5	S10	F10	TT09	TP09
135 to 140	5 ³ / ₁₆ to 5 ¹ / ₂	\$30	F30	TT30	TP30
150 to 155	5 ¹¹ / ₁₆ to 6	\$31	F31	TT31	TP31
160 to 170	6 ⁷ /16 to 6 ¹ /2	S32	F32		
180	6 ¹¹ / ₁₆ to 7	\$33	F33		
190 to 200	71/4 to 8	S34	F34		
220 to 230	8 ¹ / ₂ to 9	\$35	F35		
240 to 260	9 ¹ / ₂ to 10	\$36	F36		
280	10 ¹ / ₂ to 11	S37	F37		
300	11 ¹ / ₂ to 12	\$38	F38		
320 to 330	12 ¹ / ₂ to 13	\$39			
340 to 360	14	S40			
380	15	S41			
400	16	S42			
420	17	S43			
440 to 460	18	S44			
480	19	S45			
500	20	S46			
530	21	S47			
560	22	S48			
580	23	S49			
600	24	S50			

	Heavy Se	ries	
mm	inch	Support	Flang
100 to 105	3 ¹¹ / ₁₆ to 4	\$54	F54
110 to 120	4 ³ / ₁₆ to 4 ¹ / ₂	\$55	F55
125 to 130	4 ¹¹ / ₁₆ to 5	\$56	F56
135 to 140	5 ³ / ₁₆ to 5 ¹ / ₂	\$57	F57
150 to 155	5 ¹¹ / ₁₆ to 6	S58	F58
160 to 170	6 ⁷ /16 to 6 ¹ /2	\$59	F59
180	6 ¹¹ / ₁₆ to 7	S60	F60
190 to 200	71/4 to 8	S61	F61
220 to 230	8 ¹ / ₂ to 9	S62	F62
240 to 260	9 ¹ / ₂ to 10	S63	F63
280	11	\$83	F64
300	12	S65	F65
320 to 330	13	S66	
340 to 360	14	S86	
380 to 400	15 to 16	S68	
420 to 440	17	S89	
460	18	S90	
480	19	S94	
500	20	S94	
530	21	S94	
560	22	S94	
580	23	S95	
600	24	S95	


Bearing Types

Retained Type Bearings (BR)


This bearing has integral lips on the outer race to provide a surface for axial load. This axial load is accommodated on the inner race via the hardened clamp rings, which both align the inner race halves and provide roller guidance. In larger bearings the inner race is manufactured with integral ribs for roller guidance and axial load.

Expansion Type Bearings (BX)

This bearing is designed for radial loads only. As in the retained type bearing, the rollers are guided on the inner race by the hardened shoulders of the clamping rings.

This type of bearing will locate the shaft axially as well as provide a means for taking axial load. The retained outer race must be fixed sideways against one of the housing groove shoulders using the pins and screws provided. Only one retained unit should be mounted on any particular shaft. Additional care should be taken when mounting split roller bearing unit on shafts using other, non-split types of bearings (ball, cylindrical and spherical roller etc.) to ensure there are no other locating bearings used.

During expansion or contraction of the shaft, rollers are free to move across the plain outer race offering virtually no resistance to axial movement. Limits for the amount of axial movement are given in the Assembly and Maintenance section.

Support Types

Support Units

SRB bearings and housings may be mounted in a variety of support units according to the application and loading constraints. A number of variants are available as standard types with other unit types available on request. SRB can also offer a design and manufacturing facility to produce bespoke units to cover more specialised applications.

Pillow Block Type

This is by far the most popular method for mounting SRB units. These supports are manufactured from high strength, grade 250 (BS EN1561 :1997) cast iron. This, combined with the robust design, provides a stable, rigid base, allowing the split bearing fitted to give optimum performance.

Flange Units

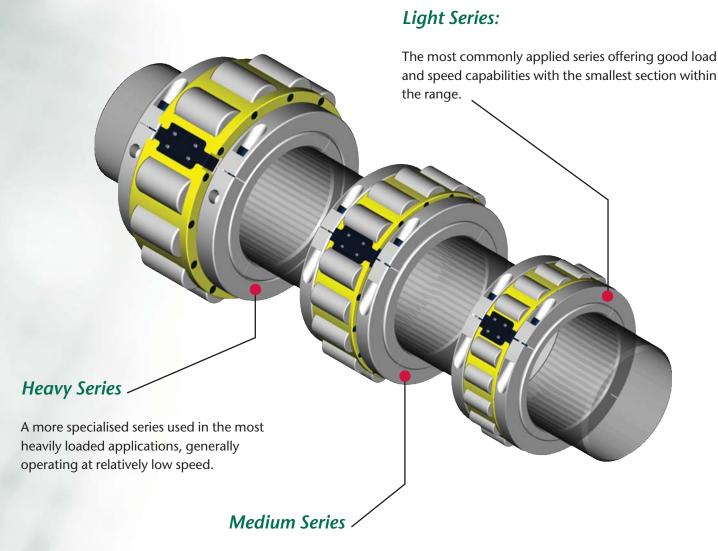
In applications where bearings need to be mounted against horizontal or vertical faces, SRB flange units provide a simple means of achieving this goal. Again, the use of Grade 250 cast iron ensures a durable unit.

Hanger Units

A compact unit commonly used for supporting screw conveyors or similar equipment.

Take-up Units

These sliding units can be used to effectively tension conveyor and elevator systems. Both pull and push types are available.



Range Comparison Bearing Series

Comparison

SRB offers a range of bearing series, providing solutions for a wide range of operating conditions. Light, Medium and Heavy series offer an increasing ability to accommodate higher loads. As the series increases the speed capability reduces.

An increased section offers additional load carrying capacity. This series is typically used in arduous, heavily loaded applications where shock load and vibration may be present.

Bearing Selection

Dynamic Loading

Selection of SRB split roller bearings must take into account the effects of both radial and axial loads. These loads must be considered independently of each other.

Radial Load Considerations

101

The basic rating life of a bearing can be derived from the formulae laid down in ISO281:1990

$$L_{10} = (C/P)^{10/3} (10^{6} \text{ Revolutions}) - (i)$$

In the majority of cases where the speed remains constant then the life can be expressed in hours from the formula

$$L_{10}h = (10^6) \times L_{10} - (ii)$$

60 x n

Substituting – (i)

$$L_{10}h = \frac{(10^6) x}{60 x n} \left(\frac{C}{P}\right)^{10/3} - (ii)$$

- L₁₀ = Basic Rating Life (90% reliability), 10⁶ Revolutions
- $L_{10}h$ = Basic Rating Life (90% Reliability), Hours
- C = Bearing Dynamic Capacity, kN

n = Speed, min⁻¹

P = Equivalent Bearing Load

This calculation assumes for the load components considered for an individual bearing, that the shaft system is a beam resting on rigid, moment free supports. Elastic deformations in the bearing, housing or machine structure are not taken into account.

Equivalent Load "P"

As previously stated radial and axial loads must be considered separately for split roller bearings. For the calculation of theoretical life only radial loads are considered.

Fr = Radial Loads

The value of Fr is that calculated from standard mechanical formulae, the impact of additional forces resulting from external influences must also be considered.

Load Condition	Factor Fz
Steady	1.0 to 1.3
Light Shock or Out of Balance	1.3 to 2.0
Heavy Shock or Vibration	2.0 to 3.0

Fz = Factor

Under the influence of the above conditions

$$\mathbf{P} = \mathbf{F}_{\mathrm{r}} \mathbf{x} \mathbf{F}_{\mathrm{z}}$$

The required theoretical bearing life is based upon a number of factors, including reliability, accessibility and service considerations. Generally life values should be as follows:

Guide to Lif	fe Values
Machine Used Intermittently	500 to 2,000 hours
Occasional Use	5,000 to 10,000 hours
Normal Operation	20,000 to 50,000 hours
Continuous Operation	75,000 to 100,000 hours
High Reliability	> 100,000 hours

Adjusted Life Calculation

The L10 fatigue life calculation is based upon the rating life of a large number of identical bearings expressed as a number of revolutions operating at a constant speed. This rating life is reached or exceeded by 90% of these before the first evidence of fatigue appears.

The above definition applies to bearings operating under optimum conditions. Variations in operating conditions will lead to changes in the life of these bearings.

ISO281 allows for an adjusted life calculation:

Lhna	=	$a_1 x a_2 x a_3 x L_{10}h$
Where	2	
Lhna	=	Adjusted Life
L ₁₀ h	=	Rating Life in Hours
a ₁	=	Life adjustment factor, failure probability other than 10%
a ₂	=	Life adjustment factor, material properties

a₃ = Life adjustment factor, operating conditions

a₁ Factor

ź

In cases where a failure rate other than 10% is required, then an a_1 factor as in the table below, should be applied.

Table A1

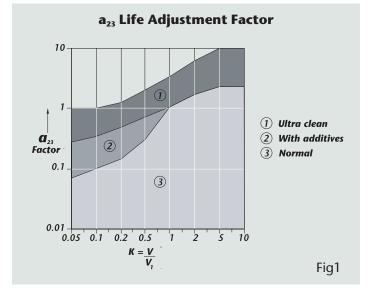
	Adjustment Factor					
Failure Probability %	10	5	4	3	2	1
Factor a ₁	1.00	0.62	0.53	0.44	0.33	0.21

a₂ Factor

This factor takes into account the material properties.

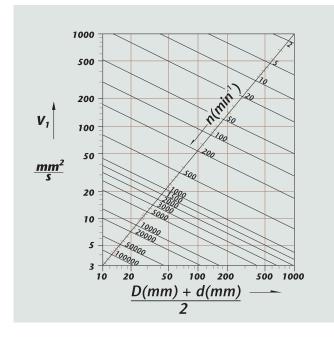
a₃ Factor

The a_3 factor considers all operational parameters that influence fatigue life. The most obvious of these is lubrication. The highest life values are achieved where a state of hydrodynamic lubrication exists, in this state no metal to metal contact occurs.

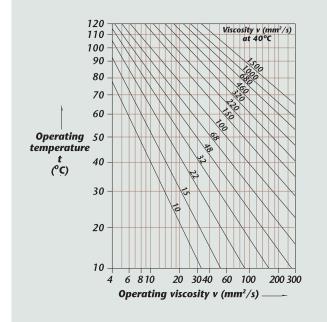

Decreasing effectiveness of lubricant due to decreasing film thickness or effects of contamination will reduce the a_3 factor.

Due to the interrelationships between materials adjustment factor a_2 and operating adjustment factor a_3 , a common factor a_{23} is frequently used.

a₂₃ Factor


$a_{23} = a_2 + a_3$

The a_{23} factor can be taken from fig 1:


- V₁ = Rated Viscosity (Depends on bearing size and operating speed)
- V = Operating Viscosity (Depends on original viscosity and operating temperature)

Values for V and V_1 are obtained from the following graphs:

Where D = Bearing outside diameter d = Bearing Bore n – Shaft speed (RPM)

 V_1 is then read off the vertical axis.

Using the operating temperature and nominal lubricant viscosity, the value for operating viscosity, V, is read off the horizontal axis.

Static Loading

Co =

In situations where bearings rotate slowly (<10 rpm), oscillate slowly, are stationary for prolonged periods, or subject to high shock loads, it is important to check that no permanent deformations occur between rolling elements and raceways at peak load.

The basic static load rating is defined in ISO 76:1987 and refers to the contact stress at the centre of the most heavily loaded rolling element/raceway contact area. For roller bearings this value is 4000 Mpa. This will result in a permanent deformation of 0.0001 of the roller diameter.

The required static load rating can be determined from:

Co =	Basic Static Load Rating
Po =	Equivalent Static Load
Fs =	Static Safety Factor

Fs. Po

Guidelines for the Static Safety Factor Fs can be found in the table below:

Nature of Duty	Requirements for Duty				
	Low	Medium	High		
Smooth no Vibration	1.0	1.5	3.0		
Normal	1.0	1.5	3.5		
Heavy	>2.5	>3.0	>4.0		

Bearing Ratings

Light Series						
Sha	aft (d)		Bearing	s Ratings		
mm	inch	Dynamic C _r (kN/lb)	Static C₀r (kN/lb)	Axial C _a (kN/lb)	Max RPM	
35	1 ³ / ₁₆	65	68	3.20	5400	
40	1 ¹ / ₂	14613	15287	719.38		
45	1 ¹¹ / ₁₆	83	87	3.60	4630	
50	2	18659	19558	809.30		
60	2 ³ / ₁₆	103	115	5.40	3940	
65	2 ¹ / ₂	23155	25853	1213.95		
70	2 ¹¹ / ₁₆	138	161	7.60	3310	
75	3	31024	36194	1708.53		
80	3 ³ / ₁₆	187	231	12.40	2790	
90	3 ¹ / ₂	42039	51931	2787.59		
100	3 ¹¹ / ₁₆	288	366	16.00	2340	
105	4	64745	82280	3596.90		
110 115	$\frac{4^{3}}{16}}{4^{1}}{2}$	316 71040	427 95993	18.60 4181.39	1970	
120	4 ¹¹ / ₁₆	363	496	22.20	1740	
130	5	81606	111505	4990.69		
135	5 ³ / ₁₆	422	585	25.80	1570	
140	5 ¹ / ₂	94869	131513	5799.99		
150	5 ¹¹ / ₁₆	459	664	29.40	1450	
155	6	103187	149273	6609.30		
160	6 ⁷ / ₁₆ 6 ¹ / ₂	583 131064	792 178049	33.00 7419	1320	
170	6 ¹¹ / ₁₆	524	828	36.40	1220	
180	7	117800	186142	8183		
190	7 ¹ / ₄	614	990	41.00	1070	
200	8	138033	222561	9217		
220	8 ¹ / ₂	659	1062	49.00	930	
230	9	148149	238747	11016		
240	9 ¹ / ₂	696	1182	57.80	820	
250	10	156467	265724	1 2994		
260	10 ¹ / ₂	794	1376	66.80	730	
280	11	178498	309337	15017		
300	11 ¹ / ₂	929	1665	78.20	650	
305	12	208848	374307	1 7580		
320	12 ¹ / ₂	920	1674	89.00	590	
330	13	206824	376330	20008		
340 350	14	967 217390	1824 410052	99.60 22391	540	
360 380	15	1011 227282	1975 443998	110.40 24819	500	
400	16	1054 236949	2125 477719	115.60 25988	460	
420	17	1095 246166	2275 511440	121.00 27202	430	
440 460	18	1134 254933	2427 545611	127.20 28596	410	
480	19	1291 290228	2800 629465	132.60 29810	380	
500	20	1336 300345	2974 668582	137.80 30979	360	
530	21	1377 309562	3150 708148	140.60 31608	340	
560	22	1419 319004	3324 747265	142.40 32013	330	
580	23	1591 357671	3759 845057	144.00 32372	310	
600	24	1638 368237	3956 889344	146.80 33002	300	

	N	lediu	m Ser	ies	
Sha	aft (d)		Bearings	Ratings	
mm	inch	Dynamic C _r (kN/lb)	: Static C _{or} (kN/lb)	Axial C _a (kN/lb)	Max RPM
45 50	1 ¹¹ / ₁₆ 2	121 27202	127 28551	6.20 1394	4350
55 65	$\frac{2^{3}}{16}}{2^{1}}$	168 37768	190 42714	8.80 1978	3680
70 75	2 ¹¹ / ₁₆ 3	258 58001	300 67443	10.60 2383	3080
80 90	3 ³ / ₁₆ 3 ¹ / ₂	297 66768	353 79358	17.80 4002	2520
100 105	3 ¹¹ / ₁₆ 4	388 87226	491 110381	25.00 5620	2130
110 115	$\frac{4^{3}}{16}}{4^{1}}{2}$	454 102063	592 133087	31.20 7014	1820
120 130	4 ¹¹ / ₁₆ 5	525 118025	700 157366	38.20 8588	1600
135 140	5 ³ / ₁₆ 5 ¹ / ₂	600 134885	817 183669	45.40 10206	1450
150 155	5 ¹¹ / ₁₆ 6	730 164111	1034 232453	52.40 11780	1320
160 170	6 ⁷ / ₁₆ 6 ¹ / ₂	842 189289	1175 264151	61.40 13803	1200
180	6 ¹¹ / ₁₆ 7	927 208398	1357 305066	71.20 16006	1120
190 200	7 ¹ / ₄ 8	1013 227732	1516 340810	80.00 17985	960
220 230	8 ¹ / ₂ 9	1138 255833	1668 374981	89.80 20188	850
240 260	9 ¹ / ₂ 10	1240 278763	1882 423091	98.80 22211	750
270 280	10 ¹ / ₂ 11	1476 331818	2357 529875	113.80 25583	670
300 305	11 ¹ / ₂ 12	1569 352725	2607 586077	129.00 29000	610
320 330	12 ¹ / ₂ 13	1723 387346	2922 656892	144.20 32417	550
340 360	14	1989 447145	3403 765025	159.20 35790	500
380	15	1800 404656	3202 719838	174.40 39207	460
400	16	2105 473223	3793 852701	188.40 42354	430
420	17	2324 522456	4164 936105	202.00 45411	400
440 460	18	2215 497952	4183 940376	216.00 48559	380
480	19	2445 549658	4594 1032773	230.00 51706	360
500	20	2320 521557	4571 1027602	244.00 54853	340
530	21	2556 574612	5028 1130340	258.00 58001	330
560	22	2683 603163	5436 1222062	272.00 61148	310
580	23	2740 615977	5601 1259155	286.00 64295	300
600	24	2770 622721	5637 1267248	300.00 67443	290

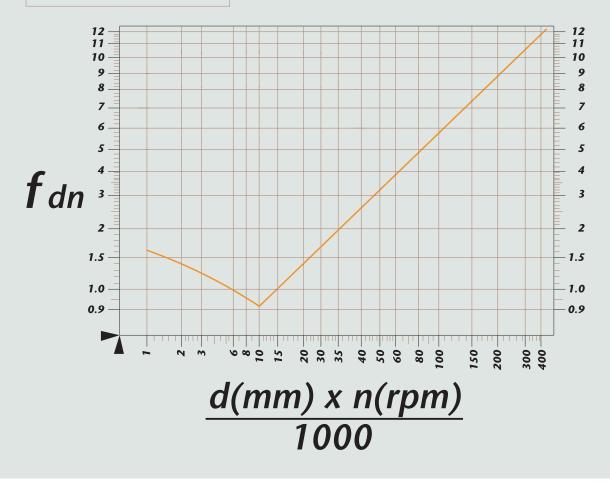
		Heavy	/ Serie	es	
Sha	ıft (d)		Bearings	Ratings	;
mm	inch	Dynamic C, (kN/lb)	: Static C₀r (kN/lb)	Axial C _a (kN/lb)	Max RPM
100	211/				
100 105	3 ¹¹ / ₁₆ 4	653 146800	783 176025	31.20 7014	1820
110 120	$\frac{4^{3}}{16}}{4^{1}}{2}$	656 147475	801 180072	39.10 8790	1640
125 130	4 ¹⁵ / ₁₆ 5	753 169281	974 218964	49.00 11016	1500
135 140	5 ³ / ₁₆ 5 ¹ / ₂	827 185917	1084 243693	58.80 13219	1340
150 155	5 ¹¹ /16	1037 233127	1325 297872	69.40 15602	1220
160 170	6 ⁷ / ₁₆ 6 ¹¹ / ₁₆	1015 228181	1326 298097	79.20 17805	1110
175	6 ³ / ₄	1275	1767	89.00	1030
180 190	7 7 ¹ /4	286631 1423	397238 1958	20008 99.60	880
200 220	8 8 ¹ /2	319903 1665	440176 2455	22391 109.40	760
230 240	9 9 ¹ /2	374307 1694	551906 2519	24594 130.80	
260	10	380826	566294	29405	700
280	11	1936 435230	3115 700280	153.00 34396	620
300	12	2114 475246	3194 718040	174.40 39207	560
320	13	2718 611031	4093 920143	198.80 44692	500
340 360	14	2686 603837	4421 993881	213.60 48019	460
380 400	15 16	3195 718265	5238 1177550	250.80 56382	420
420 440	17	3187 716466	5813 1306815	275.80 62002	360
460	18	3501 787056	6091 1369312	302.40 67982	340
		/0/000	1307312	07902	
500	20	4324	7603	347.00	310
530	21	972074	1709223	78009	510
		4448	8781	382.60	
560	22	999950	1974048	86012	280
580 600	23 24	4443 998826	8918 2004847	400 89924	270

Axial load ratings (C_a) assume the use of EP additives or oil lubrication, otherwise use 50% of values. *Higher loads and speeds may be permissible. Please contact SRB Technical Services.*

Axial Considerations

Axial Load

Bearing selection, on an axial load basis, must be considered independently from the radial load.


- 1. Calculate the axial loads acting on the bearing
- 2. Multiply each load by the appropriate dynamic factor f_z
- 3. Combine these loads to determine the effective axial load Pa
- 4. Select a bearing having a Ca value greater than the product of Pa x fdn, d.n is the product of the shaft size in mm and the speed in r.p.m. To determine fdn use the velocity graph below.

Axial Ratings C_a

These ratings are for constant loads with oil or extra pressure greases. If greases without extra pressure additives are applied then the catalogue rating must be decreased by 50%. In instances where bearings operate at over 50% of their catalogue speed rating and over 50% of their axial load ratings (C_a) then recessed shafts should be considered. Please contact our Technical Services Department.

VELOCITY

APPLIES ONLY TO AXIAL LOADS ON BR RETAINED BEARINGS. BEARING BORE = d BEARING R.P.M. = n

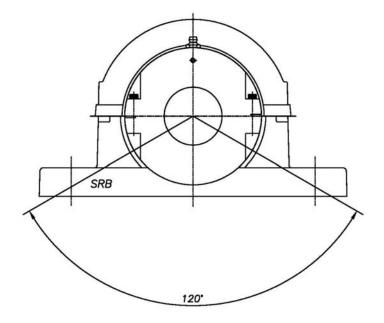
Bearing Clearance and Temperature Considerations

SRB bearings are manufactured to give an ISO 'CN' clearance as standard. At specific customer request, bearings may be produced with any clearance to suit a particular application. When assessing the requirement for special clearances, it is particularly important to consider the differential temperature between shaft and housing. It should also be noted that an increase in bearing clearance will lead to a small reduction in bearing capacity. Typically a C3 clearance will reduce capacity by 5% and C5 clearance by 10%.

SRB bearings can also be produced as C2. This clearance is smaller than CN and is typically used in applications involving shock or reciprocating loads.

Cleanliness of component parts when fitting will have a direct impact on the running clearance of the bearing. This is of particular importance when fitting new bearings into existing cast iron or refitting bearings after maintenance. Special care must be taken to remove build-ups of aged grease and other contaminants in order to avoid reducing the bearing clearance when fitted.

When selecting bearings for use at elevated temperatures, consideration should also be given to the bearings dimensional stability. SRB bearings are tempered to give stability up to 140°C (284°F). In order to operate at higher temperatures, bearings must be specially heat-treated. This process will lead to a reduction in capacity as a result of the reduced hardness.


The designations for specially heat-treated bearings are in line with those quoted in ISO standards. The effects of temperature stabilisation are detailed in the table shown.

Operating Temperature	200°C	250°C	300°C
operating remperature	392°F	482°F	572°F
Designation	S1	S2	\$3
Reduction in Capacity	10%	25%	40%

Support Loads

Throughout the SRB range, the support units have been designed to provide a rigid and stable base to enable the associated bearing to operate to its full potential. With this in mind, all types of SRB support unit are manufactured from Grade 250 cast iron (BS EN1561:1997) and include strengthening webs and ribs to provide a highly robust unit. In order to compliment the inherent strength, we recommend that careful consideration be given to the siting and mounting of the support unit.

To determine a supports suitability, one should consider the resultant effective load derived in the bearing selection process and the direction of that load. The diagram shown indicates the area in which the full C_{or} rating of the bearing may be applied. Should the direction of the applied load be outside this area it may be necessary to consider alternative designs or materials. SRB Technical Services have a proven track record of innovative solutions and would be happy to provide assistance.

Bearing Frequencies

Condition monitoring is the collection, storage, comparison and evaluation of data taken to establish the running condition of a machine. The data can be made up of several parameters, for example, electric current, pressure, brush wear, vibration and temperature, to name a few. Vibration Analysis is the area of condition monitoring concerned with evaluating and identifying the source of vibration within a system and assessing it's severity and hence proposing the required maintenance action. The individual components of any bearing will exhibit frequency characteristics which will identify it within a system subject to vibration analysis. For SRB bearings these characteristic frequencies are detailed in the tables opposite. The values given are for a nominal speed of 1 RPM. To obtain the correct frequency required for vibration analysis software, multiply by the speed of rotation in RPM.

For further information on Condition monitoring services please contact SRB Technical.

Bearing Frequencies Table (Hz)

mm

Light Series						
mm	inch	Inner Race	Outer Race	Roller	Cage	
35 40	1 ³ / ₁₆ 1 ¹ / ₂	5.878	4.122	2.760	0.412	
45 50	1 ¹¹ / ₁₆ 2	5.852	4.148	2.847	0.415	
60 65	2 ³ / ₁₆ 2 ¹ / ₂	6.932	5.068	3.140	0.422	
70 75	2 ¹¹ / ₁₆ 3	6.902	5.098	3.252	0.425	
80 90	3 ³ / ₁₆ 3 ¹ / ₂	8.017	5.983	3.370	0.427	
100 105	3 ¹¹ / ₁₆ 4	8.089	5.911	3.137	0.422	
110 115	$\frac{4^{3}}{16}}{4^{1}}{2}$	9.109	6.891	3.538	0.431	
120 130	4 ¹¹ / ₁₆ 5	9.100	6.900	3.569	0.431	
135 140	5 ³ / ₁₆ 5 ¹ / ₂	9.087	6.913	3.612	0.432	
150 155	5 ¹¹ / ₁₆ 6	10.159	7.841	3.819	0.436	
160	6 ⁷ / ₁₆ 6 ¹ / ₂	10.162	7.838	3.809	0.435	
170 180	6 ¹¹ /16 7	12.223	9.777	4.442	0.444	
190 200	7 ¹ / ₄ 8	12.204	9.796	4.515	0.445	
220 230	8 ¹ / ₂ 9	11.064	8.936	4.645	0.447	
240 250	9 ¹ / ₂ 10	12.058	9.942	5.152	0.452	
260 280	10 ¹ / ₂ 11	12.025	9.975	5.319	0.453	
300 305	11 ¹ / ₂ 12	13.087	10.913	5.472	0.455	
320 330	12 ¹ / ₂ 13	13.028	10.972	5.795	0.457	
340 350	14	14.045	11.955	6.180	0.460	
360 380	15	15.058	12.942	6.580	0.462	
400	16	16.076	13.924	6.935	0.464	
420	17	17.088	14.912	7.319	0.466	
440 460	18	18.094	15.906	7.739	0.468	
480	19	18.102	15.898	7.684	0.468	
500	20	19.115	16.885	8.038	0.469	
530	21	20.117	17.883	8.479	0.471	
560	22	21.127	18.873	8.841	0.472	
580	23	21.140	18.860	8.744	0.472	
600	24	22.153	19.847	9.078	0.473	

Medium Series

$\frac{45}{50}$ $\frac{1^{11}}{2}$ 5.988 4.012 2.432 0.401 $\frac{55}{25}$ $\frac{2^{1}}{2}$ 7.091 4.909 2.659 0.409 70 $\frac{2^{11}}{16}$ 7.153 4.847 2.506 0.404 80 $\frac{3^{2}}{12}$ 7.091 4.909 2.659 0.409 90 $\frac{3^{1}}{2}$ 7.091 4.909 2.659 0.409 100 $\frac{3^{11}}{12}$ 7.091 4.909 2.659 0.409 100 $\frac{3^{11}}{4}$ 8.205 5.795 2.818 0.414 110 $\frac{4^{11}}{2}$ 8.143 5.857 2.981 0.418 120 $\frac{4^{11}}{16}$ 8.105 5.895 3.088 0.421 135 5^{11}_{16} 9.225 6.775 3.188 0.423 150 5^{11}_{16} 9.192 6.808 3.281 0.425 190 $7^{1/4}$ 9.192 6.808 3.281 0.427 240 $9^{1/2}$ 9.082 6.918 3.628 0.432 270 $10^{1/2}$ 11.207						
65 $2^{1}/_{2}$ 7.091 4.909 2.639 0.409 70 $2^{11}/_{16}$ 7.153 4.847 2.506 0.404 80 $3^{1}/_{2}$ 7.091 4.909 2.659 0.409 100 $3^{11}/_{16}$ 8.205 5.795 2.818 0.414 110 $4^{13}/_{16}$ 8.143 5.857 2.981 0.418 120 $4^{11}/_{16}$ 8.105 5.895 3.088 0.421 130 5 6 7.5 3.188 0.423 140 $5^{1}/_{2}$ 8.082 5.918 3.157 0.423 155 6 9.225 6.775 3.188 0.423 160 $6^{1}/_{16}$ 9.192 6.808 3.281 0.425 190 $7^{1}/_{4}$ 9.192 6.808 3.281 0.427 240 $9^{1}/_{2}$ 9.082 6.918 3.628 0.432 <td></td> <td></td> <td>5.988</td> <td>4.012</td> <td>2.432</td> <td>0.401</td>			5.988	4.012	2.432	0.401
75 3 7.133 4.847 2.506 0.404 80 $3^3/_{12}$ 7.091 4.909 2.659 0.409 100 $3^{11}/_{16}$ 8.205 5.795 2.818 0.414 110 $4^3/_{16}$ 8.143 5.857 2.981 0.418 120 $4^{11}/_{16}$ 8.105 5.895 3.088 0.421 130 5 8.105 5.895 3.088 0.421 130 5 8.105 5.895 3.088 0.421 135 $5^3/_{16}$ 8.082 5.918 3.157 0.423 150 $5^{11}/_{16}$ 9.225 6.775 3.188 0.421 180 $6^{11}/_{16}$ 9.192 6.808 3.281 0.425 190 $7^{1/4}$ 9.119 6.881 3.505 0.430 220 $8^{1/2}$ 9.161 6.839 3.72 0.427 240 $9^{1/2}$ 9.082 6.918 3.628 0.432 <td></td> <td></td> <td>7.091</td> <td>4.909</td> <td>2.659</td> <td>0.409</td>			7.091	4.909	2.659	0.409
90 $3'/_2$ 7.091 4.909 2.639 0.409 100 $3''_{16}$ 8.205 5.795 2.818 0.414 110 $4^3/_{16}$ 8.143 5.857 2.981 0.418 120 $4''_{16}$ 8.143 5.857 2.981 0.418 120 $4''_{16}$ 8.105 5.895 3.088 0.421 135 $5^3/_{16}$ 8.082 5.918 3.157 0.423 150 $5''_{12}$ 8.082 5.918 3.157 0.423 160 $6^7/_{16}$ 9.225 6.775 3.188 0.423 180 $6''_{16}$ 8.107 5.893 3.083 0.421 180 $6''_{16}$ 9.192 6.808 3.281 0.425 190 $7'_{14}$ 9.119 6.881 3.505 0.430 220 $8'_{12}$ 9.161 6.839 3.372 0.427 240 $9'_{12}$ 9.082 6.918 3.628 0.432			7.153	4.847	2.506	0.404
105 4 8.205 5.795 2.818 0.414 110 $4^{3}/_{16}$ 8.143 5.857 2.981 0.418 120 $4^{11}/_{16}$ 8.105 5.895 3.088 0.421 130 5 8.082 5.918 3.157 0.423 140 $5^{1/2}$ 8.082 5.918 3.157 0.423 150 $5^{11}/_{16}$ 9.225 6.775 3.188 0.423 160 $6^{7}/_{16}$ 8.107 5.893 3.083 0.421 180 $6^{11}/_{16}$ 9.192 6.808 3.281 0.425 190 $7^{1/4}$ 9.119 6.881 3.505 0.430 220 $8^{1/2}$ 9.161 6.839 3.372 0.427 240 $9^{1/2}$ 9.082 6.918 3.628 0.432 270 $10^{1/2}$ 11.207 8.793 4.082 0.440 355 12 11.207 8.793 4.082 0.441			7.091	4.909	2.659	0.409
115 $4^{1}/_{2}$ 0.143 0.307 2.931 0.413 120 $4^{11}/_{16}$ 8.105 5.895 3.088 0.421 130 $5^{11}/_{16}$ 8.082 5.918 3.157 0.423 150 $5^{11}/_{16}$ 9.225 6.775 3.188 0.421 150 $5^{11}/_{16}$ 9.225 6.775 3.188 0.423 160 $6^{7}/_{16}$ 8.107 5.893 3.083 0.421 180 $6^{11}/_{16}$ 9.192 6.808 3.281 0.425 190 $7^{1}/_{4}$ 9.192 6.808 3.281 0.427 200 $8^{1}/_{2}$ 9.119 6.881 3.505 0.430 220 $8^{1}/_{2}$ 9.161 6.839 3.372 0.427 240 $9^{1}/_{2}$ 9.082 6.918 3.628 0.432 270 $10^{1}/_{2}$ 11.207 8.793 4.082 0.440 305 12 11.207 8.793 4.082			8.205	5.795	2.818	0.414
130 5 3.103 3.033 5.003 0.421 135 $5^{3}/16$ 8.082 5.918 3.157 0.423 150 $5^{11}/16$ 9.225 6.775 3.188 0.423 160 $6^{7}/16$ 8.107 5.893 3.083 0.421 180 $6^{11}/16$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.192 6.808 3.281 0.425 200 $8^{1}/2$ 9.119 6.881 3.505 0.430 210 $8^{1}/2$ 9.119 6.881 3.628 0.432 200 $8^{1}/2$ 9.082 6.918 3.628 0.432 270 $10^{1/2}$ 10.162 7.838 3.808 0.432 <td< td=""><td></td><td></td><td>8.143</td><td>5.857</td><td>2.981</td><td>0.418</td></td<>			8.143	5.857	2.981	0.418
140 $5^{1}/_{2}$ 8.062 5.918 5.157 0.423 150 $5^{11}/_{16}$ 9.225 6.775 3.188 0.423 160 $6^{7}/_{16}$ 8.107 5.893 3.083 0.421 180 $6^{11}/_{16}$ 9.192 6.808 3.281 0.425 190 $6^{1}/_{2}$ 8.107 5.893 3.083 0.421 180 $6^{11}/_{16}$ 9.192 6.808 3.281 0.425 190 $7^{1}/_{4}$ 9.192 6.808 3.281 0.425 200 $8^{1}/_{2}$ 9.119 6.881 3.505 0.430 220 $8^{1}/_{2}$ 9.119 6.881 3.505 0.432 240 $9^{1}/_{2}$ 9.082 6.918 3.628 0.432 270 $10^{1}/_{2}$ 10.162 7.838 3.808 0.435 300 $11^{1}/_{2}$ 11.207 8.793 4.082 0.440 320 $12^{1}/_{2}$ 11.170 8.830 </td <td></td> <td></td> <td>8.105</td> <td>5.895</td> <td>3.088</td> <td>0.421</td>			8.105	5.895	3.088	0.421
155 6 9.223 $0.7/3$ 3.186 0.423 160 $6^{7}/16$ 8.107 5.893 3.083 0.421 180 $6^{11}/16$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.192 6.808 3.281 0.425 190 $7^{1}/4$ 9.119 6.881 3.505 0.430 220 $8^{1}/2$ 9.119 6.881 3.505 0.430 220 $8^{1}/2$ 9.119 6.881 3.505 0.430 220 $8^{1}/2$ 9.119 6.881 3.505 0.442 240 $9^{1}/2$ 9.082 6.918 3.628 0.432 270 $10^{1/2}$ 10.162 7.838 3.808 0.435 300 $11^{1/2}$ 11.207 8.793 4.082 0.440 320 $12^{1/2}$ 11.170 8.830 4.217 0.442			8.082	5.918	3.157	0.423
170 $6'_{1/2}$ 8.107 5.893 5.083 0.421 180 $6''_{1/16}$ 9.192 6.808 3.281 0.425 190 $7'_{1/4}$ 9.192 6.808 3.281 0.425 190 $7'_{1/4}$ 9.119 6.881 3.505 0.430 220 $8'_{1/2}$ 9.161 6.839 3.372 0.427 240 $9'_{1/2}$ 9.082 6.918 3.628 0.432 260 10 9.082 6.918 3.628 0.432 270 $10'_{1/2}$ 10.162 7.838 3.808 0.435 300 $11'_{1/2}$ 11.207 8.793 4.082 0.440 320 $12'_{1/2}$ 11.170 8.830 4.217 0.442 340 14 11.180 8.820 4.178 0.441 380 15 11.037 8.963 4.769 0.448 400 16 12.169 9.831 4.651 0.447			9.225	6.775	3.188	0.423
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.107	5.893	3.083	0.421
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180		9.192	6.808	3.281	0.425
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9.119	6.881	3.505	0.430
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.161	6.839	3.372	0.427
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.082	6.918	3.628	0.432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10.162	7.838	3.808	0.435
330 13 11.170 8.630 4.217 0.442 340 14 11.180 8.820 4.178 0.441 380 15 11.037 8.963 4.769 0.448 400 16 12.169 9.831 4.651 0.447 420 17 12.195 9.805 4.548 0.446 440 18 13.160 10.840 5.122 0.452 480 19 13.181 10.819 5.031 0.451			11.207	8.793	4.082	0.440
360 14 11.180 8.820 4.178 0.441 380 15 11.037 8.963 4.769 0.448 400 16 12.169 9.831 4.651 0.447 420 17 12.195 9.805 4.548 0.446 440 18 13.160 10.840 5.122 0.452 480 19 13.181 10.819 5.031 0.451			11.170	8.830	4.217	0.442
400 16 12.169 9.831 4.651 0.447 420 17 12.195 9.805 4.548 0.446 440 18 13.160 10.840 5.122 0.452 480 19 13.181 10.819 5.031 0.451		14	11.180	8.820	4.178	0.441
420 17 12.195 9.805 4.548 0.446 440 460 18 13.160 10.840 5.122 0.452 480 19 13.181 10.819 5.031 0.451	380	15	11.037	8.963	4.769	0.448
440 460 18 13.160 10.840 5.122 0.452 480 19 13.181 10.819 5.031 0.451	400	16	12.169	9.831	4.651	0.447
460 18 13.160 10.840 3.122 0.432 480 19 13.181 10.819 5.031 0.451	420	17	12.195	9.805	4.548	0.446
		18	13.160	10.840	5.122	0.452
500 20 14.153 11.847 5.593 0.456	480	19	13.181	10.819	5.031	0.451
	500	20	14.153	11.847	5.593	0.456
530 21 14.160 11.840 5.559 0.455	530	21	14.160	11.840	5.559	0.455
560 22 15.200 12.800 5.793 0.457	560	22	15.200	12.800	5.793	0.457
580 23 15.203 12.797 5.778 0.457	580	23	15.203	12.797	5.778	0.457
600 24 15.168 12.832 5.951 0.458	600	24	15.168	12.832	5.951	0.458

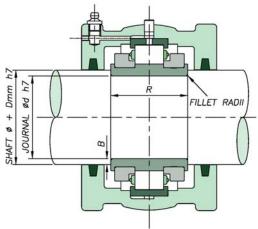
	ł	leavy	Serie	es	
mm	inch	Inner Race	Outer Race	Roller	Cage
100 105	3 ¹¹ / ₁₆ 4	6.073	3.927	2.222	0.393
110 120	$4^{3}/_{16}$ $4^{1}/_{2}$	5.982	4.018	2.446	0.402
125 130	4 ¹⁵ / ₁₆ 5	7.114	4.886	2.601	0.407
135 140	5 ³ / ₁₆ 5 ¹ / ₂	7.079	4.921	2.690	0.410
150 155	5 ¹¹ / ₁₆ 6	7.190	4.810	2.422	0.401
160 170	6 ⁷ / ₁₆ 6 ¹¹ / ₁₆	7.126	4.874	2.570	0.406
175 180	6 ³ / ₄ 7	8.243	5.757	2.727	0.411
190 200	7 ¹ / ₄ 8	7.047	4.953	2.779	0.413
220 230	8 ¹ / ₂ 9	8.102	5.898	3.097	0.421
240 260	9 ¹ / ₂ 10	8.056	5.944	3.240	0.425
280	11	9.114	6.886	3.520	0.430
300	12	8.043	5.957	3.280	0.425
320	13	8.105	5.895	3.088	0.421
340 360	14	9.093	6.907	3.591	0.432
380 400	15 16	9.111	6.889	3.530	0.431
420 440	17	11.158	8.842	4.260	0.442
460	18	10.125	7.875	3.938	0.438
500 530	20 21	10.132	7.868	3.911	0.437
560	22	12.159	9.841	4.693	0.447
580 600	23 24	13.208	10.792	4.916	0.450

The above figures are unitary values. For the appropriate frequency, multiply by application RPM.

Shaft Considerations

It is essential that the shaft on to which the bearing is to be mounted has been produced to the correct size and tolerance for the operating conditions. If replacing a bearing in an existing system, the shaft must be checked to establish if any wear or damage has taken place. The table below may be followed for both the manufacture of new shafts and the inspection of existing shafts.

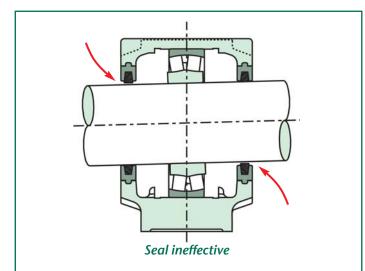
Shaft Dia.	dn<50000 & C/P>10	50000 <dn<150000 & C/P>10</dn<150000 	50000 <dn<150000 & C/P<10</dn<150000 	dn>150000	Cylindricity of Shat
	h9	h8	h7	h6	IT6
0 - 50 mm	-62	-39	-25	-16	-16
0 - 2"	-2.5	-1.5	-1	-0.6	-0.6
50 - 80 mm	-74	-46	-30	-19	-19
2 - 3"	-3	-1.8	-1.2	-0.7	-0.7
80 - 120 mm	-87	-54	-35	-22	-22
3 - 5"	-3.5	-2.1	-1.4	-0.9	-0.9
120 - 180 mm	-100	-63	-40	-25	-25
5 - 7"	-3.9	-2.5	-1.6	-1	-1
180 - 250 mm	-115	-72	-46	-29	-29
7 - 10"	-4.5	-2.8	-1.8	-1.2	-1.2
250 - 315 mm	-130	-81	-52	-32	-32
10 - 12½"	-5.1	-3.2	-2	-1.3	-1.3
315 - 400 mm	-140	-89	-57	-36	-36
12½ - 15½"	-5.5	-3.5	-2.2	-1.4	-1.4
400 - 500 mm	-155	-97	-63	-40	-40
15½ - 19½"	-6.1	-3.8	-2.5	-1.6	-1.6
500 - 600 mm	-175	-110	-70	-44	-44
19½ - 24"	-6.9	-4.3	-2.8	-1.7	-1.7

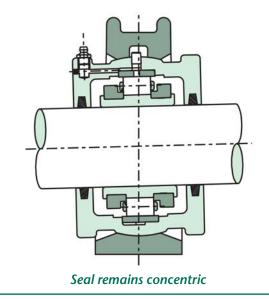

Recess Mounting

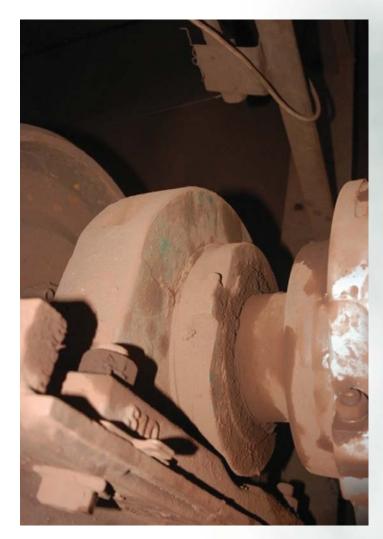
In applications where the resultant axial load exceeds 50% of the Ca rating for the bearing, the shaft design should include either a recess for bearing seating or grooves to accommodate retaining rings. Such an arrangement should also be considered if the unit is subjected to shock loads, fluctuations in temperature over 100°C or the shaft is vertical.

The dimensions for producing an appropriate recess or for governing the position and size of the retaining rings if used are derived from the following table.

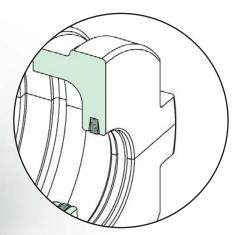
Journal Diameter d	Shoulder Diameter 'D' mm	Fillet Radii	Shoulder Height B	Recess Width R	Squareness of Abutment Faces
40 - 90mm 1½" - 3½"	d + 5mm	1.2mm	2.5mm	C + 0.1mm C + 0.3mm	0.1mm
Over 90 - 150mm Over 3½" - 6"	d + 10mm	2.0mm	5.0mm	C + 0.15mm C + 0.40mm	0.1mm
Over 155mm Over 6"	d + 10mm	2.3mm	5.0mm	C + 0.2mm C + 0.5mm	0.1mm

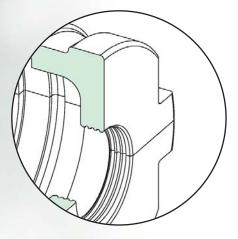

N.B. Width of recesses for standard bearings maybe different from that used for existing products. Please consult SRB Technical Services department for bearings suitable for other recess sizes.


Sealing Arrangements

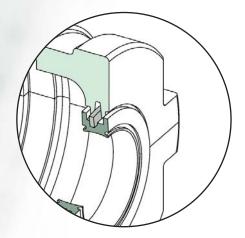

Any bearing, housing and support unit that is not suitably sealed against its surrounding environment is unlikely to achieve its full potential, either in terms of performance or life span. The prevention of ingress of foreign materials and contaminants is of paramount importance and should be considered as early in the selection process as possible.

A wide variety of sealing solutions are available to users of SRB products as "off the shelf" arrangements. This range will cover the vast majority of operating environments found throughout all industries. To cover those situations where a proprietary arrangement is not suitable, SRB Technical Services are able to work closely with designers and end users to develop and manufacture bespoke solutions tailored to specific applications.




SRB units have inherent advantages over traditional solid bearing arrangements when considering sealing. The spherical location between housing and support ensures that whichever type of seal is used, it will always remain concentric to the shaft.





Felt Seal

This type of seal is supplied as standard with all SRB housings up to a bore size of 300mm. Consisting of felt strips made from blended fibres. Seals are supplied dry and need to be soaked in oil prior to fitting.

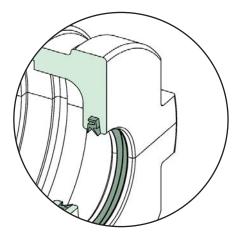
Max Speed	dN(mm) ≤150000
Temp Range	-60ºC to +100ºC
Shaft Finish	1.6µm Ra

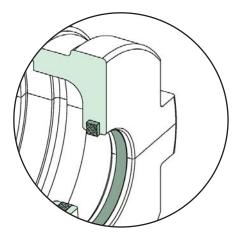
Labyrinth Grease Groove

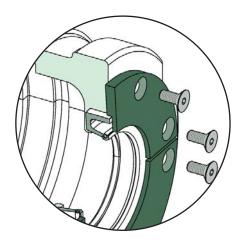
For shaft sizes over 300mm, housings are supplied with a close fitting labyrinth groove machined into the housing. No additional seal is added. For harsh environments, alternative sealing arrangements are available.

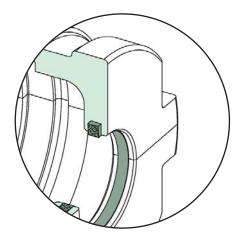
Max SpeedAs BearingTemp RangeAs BearingShaft Finish3.2µm Ra

Aluminium Triple Labyrinth


A precision machined, non-contacting seal suitable for both high speed and general applications. Once fitted the seal revolves with the shaft. The seal grips the shaft via two split O-rings fitted to the bore of the seal. SRB Triple Labyrinth seals are fitted with high temperature Viton cord as standard.


Max SpeedAs BearingTemp Range-20°C to +175°CShaft Finish3.2µm RaSuffix LettersATL


Neoprene Triple Labyrinth


The seal is moulded from Neoprene rubber and incorporates a steel centre band. This steel pressing has ends which form an interlocking arrangement and hence secure the seal to the shaft. The seal can be used where restrictions prevent the use of Aluminium (e.g. Mining).

Max SpeeddN(mm) ≤150000Temp Range-20°C to +100°CShaft Finish3.2µm RaSuffix LettersNTL

Nitrile Single Lip

For environments involving moderate liquid splashing but not submersion. Should be avoided where abrasive particles are also present as this can lead to shaft wear in the seal area. High temperature versions are also available.

Max Speed	dN(mm) ≤150000
Temp Range	-20ºC to +100ºC
Shaft Finish	3.2µm Ra
Suffix Letters	RSS (RSSHT for high temperature)

High Temperature Packing

A self-lubricating seal based around PTFE and graphite. In order to utilise the highest quality materials available, SRB housings for high temperature applications are machined to suit the High Temperature Packing used.

Max Speed Temp Range Shaft Finish Suffix Letters

dN(mm) ≤150000 -60°C to +300°C 1.2µm Ra **HTPS**

Single Lip with Garter Spring and **Retaining Plate**

A more specialised seal for very wet environments with heavy splash. This type of seal is NOT suitable for continuous submersion without due consideration being given to sealing of the housing joint and any other possible points of liquid entry. Please consult SRB Technical Services for more information.

Max Speed Temp Range Shaft Finish Suffix Letters **WSRP**

dN(mm) ≤150000 -20ºC to +100ºC 0.8µm Ra

Kevlar Packing Seal

This recent addition to the sealing range has proved highly effective in areas having the potential for fine particle contaminants such as cement or ash. Please consult SRB technical services for more information.

Max Speed Temp Range Shaft Finish Suffix Letters As bearing -100ºC to +280ºC 1.6µm Ra KPS

Bearing Lubrication

The function of a lubricant in a rolling element bearing is to prevent metal to metal contact between components, prevent wear and protect against corrosion. Two methods of lubrication are normally employed grease and oil. In the case of SRB Split Bearings grease lubrication is most often employed.

Grease Lubrication

Greases can be used to lubricate SRB split roller bearings under most normal conditions. Grease is the preferred method of lubrication because it can be more easily retained within the bearing enclosure and housing, the latter simplifying sealing arrangements. Greases are essentially oils thickened usually with a metal soap, other ingredients are additives such as rust inhibitors, or extra pressure additives. The oils employed may be mineral or synthetic depending upon the application.

SRB bearings are heat treated to retain dimensional stability up to 140°C. At temperatures up to 100°C, standard high quality greases may be used. We suggest good quality lithium soap or complex based greases having extra pressure additives and a penetration number of 3. It is important to note that all values given in this catalogue for axial capacity assume the use of a grease with extra pressure (EP) additives. If EP additives are not present then axial capacity is reduced by 50%

At temperatures exceeding 100°C care must be taken to ensure that the correct thickener and viscosity of base oil are selected. The performance of grease at such temperatures is dependent on a stable thickener and the temperature/viscosity ratio of the base oil. A stable base oil and soap thickener are important as is the ability of the oil to offer adequate viscosity at an elevated temperature.

In cases of water splash, calcium soap based greases may be used, these are particularly resistant to water wash out.

Care should be taken when mixing greases with different soap thickeners and base oil types. Please contact SRB Technical Services for further advice. For initial lubrication the bearing should always be well filled with grease. The remaining housing space should be filled as follows.

At low speeds, not exceeding 25% of catalogue speed rating, we suggest that the remaining housing space be fully filled with grease.

At medium speeds, between 25 and 50% of catalogue speed rating, the remaining housing space may be 1/3 to 1/2 filled with grease.

At high speeds, exceeding 50% of catalogue speed rating, the remaining housing space should be left empty.

Re-lubrication

The re-lubrication intervals will be dependent on the prevailing operating conditions.

Greases age and oxidise due to a number of considerations these include load, speed, temperature, cleanliness, presence of water and even airflow through the bearing.

For retained type bearings, initial re-lubrication intervals for guidance purposes would be 2 - 4 weeks with 3 - 6 mls added. For expansion type bearings, initial re-lubrication intervals would be 3 - 4 months with 3 - 6 mls added. More accurate intervals and quantities should be established from observations taken during bearing operation. If re-lubrication can be carried out whilst the bearing is in operation, this will allow for even distribution of the grease. This means of re-lubrication should only be undertaken if it is safe to do so.

27

Oil Lubrication

SRB split roller bearings are rarely lubricated with oil. In cases where oil is selected as a means of lubrication, then special consideration must be given to the bearing housing design and sealing.

There are three principal methods of oil lubrication:

Oil Sump:

The oil sits in the bearing housing at a level approximately halfway up the bottom dead centre rolling element. Oil circulation around the bearing is then provided via the bearing rotation agitating the oil sump. It is very important to provide a sufficiently dimensioned oil sump as too small a volume will result in increased frequency of oil change and elevated operating temperatures.

Oil Mist:

An oil/air mist is injected into the bearing via nozzles, normally a total oil loss system, this provides extremely high speed capability at high cost.

For further advice on oil selection and oil lubrication systems please consult SRB Technical Services.

Oil Circulation:

Oil is circulated into the bearing housing assembly from an external oil sump. This allows the oil to be cooled and filtered, additionally an external oil sump normally allows for a higher volume of oil. Whilst being a more optimum solution, specialist housing designs must be provided. There is also a cost and space requirement to this system.

Assembly and Maintenance

Shaft Check

When fitting bearings on both new and existing installations, the shaft need only be raised 1 to 2 millimetres. This should provide sufficient clearance to allow for easy fitting. Prior to the assembly of any bearing components the shaft must be checked for size, roundness and parallelism.

- Check a minimum of three positions along the journal length.
- Check a minimum of three positions around the shaft to establish roundness.
- Shaft tolerances and shaft surface finish are given in the table on page 23.

Fitting the Inner Ring

- Carefully unpack and clean the bearing removing all preservatives.
- Inner race locating clamping rings cannot be removed before the cage has been dismantled.
- Care must be taken that no damage occurs when cage halves are separated.

Please Note:

Spring Clips should always be retained on one cage half.

- Clean the shaft and lightly oil the bore of the inner race.
- Place the two inner race halves in approximately the correct position with the joints at the top and bottom. With the joints in that position it will allow easy access to the clamp ring screws later when they are tightened.
- Ensure that the match marks (black band) in the clamp ring groove on one side of the race coincide.

There should be an equal gap at each joint. If there are no gaps do not proceed and contact the SRB Technical Services Department.

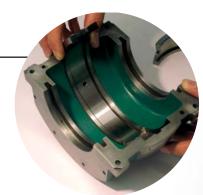
- Fit the inner race locating clamping rings. Ensure that the correct clamp ring is fitted in the corresponding groove. To assist in this the clamping rings are intentionally manufactured to different widths on the more popular sizes. In addition, the match-marking groove found on the inner race is repeated on the corresponding clamping ring.
- Make sure that the thrust faces are not damaged when the rings enter the grooves.
- The joints should be at 90° to the inner race joints and the screws should be tightened in such a way that there are four equal gaps.
- Screws should only be finger tight so that the race can be adjusted axially into its final position.

29

Pre-Assembly of the Outer Race into the Seating Groove in the Housing

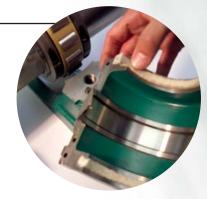
- The housing must be cleaned thoroughly removing all preservatives. If reusing an existing housing it is essential that the outer race seating groove is clean and free of any hardened grease deposits or corrosion.
- Lightly oil the seating groove and the outside diameter of the outer race halves.
- Place the race halves of the expansion or retained type into the seating groove and ensure that:
- The match marking numbers on the edge of each race half coincide.
- The lubrication hole in the outer race is in the upper housing half.
- The outer race joints should protrude equally above the housing joint faces.

If a retained bearing is being fitted:


- Pre-assemble the housing halves and fully tighten the joint socket head cap screws.
- Ensure that the joints are closed.
- Fit the pins and screws provided and tighten up evenly to ensure that the outer race is fixed square against the opposite shoulder of the seating groove.

Larger bearings (both retained and expansion) may require outer race retaining screws. If these are required, please ensure that the flat washers are not omitted. Once fitted, ensure that the end of the screw does not protrude above the race track surface.

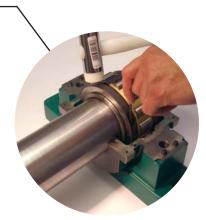
- Separate the housing halves, these are now ready for final assembly.
- Fit the appropriate seals. The seal grooves in the standard housing are suitable for felt and synthetic rubber. If the bearing is inspected or replaced on an existing installation and the housing is re-used, we advise that new seals are fitted.


Pre-Fitting the Lower Housing Half

On existing installations it is often unnecessary to change the support if a bearing, or bearing and housing has to be replaced. In such cases the support base bolts should not be touched to ensure that the replacement bearing and the old or new housing will be in the same position as previously. In new installations the support base should be positioned with the bolts finger tight. This will allow additional freedom of movement when aligning the inner and outer races.

Retained Bearing

- Slide the pre-assembled bottom half into the support base.
- Line up the inner and outer race roller track by adjusting the inner ring sideways into the final position. The final position should be confirmed by passing one half of the cage and roller assembly between the inner and outer races. The cage half should pass freely round the lower half of the bearing without becoming jammed or trapped.
- Remove the bottom housing half and tighten the clamp ring socket head cap screws and fit the cage as explained below.


Expansion Bearing	Group	Maximum Expansion if cage and rollers are assembled central 1	Maximum Expansion 2
 As in the case of the retained bearing, slide in the pre-assembled bottom housing half. 	40 mm 1½"	3 mm	6 mm
• Line up the inner ring by adjusting it sideways until it is central	50 mm 2"	3 mm	6 mm
with the outer race.	60 mm 2½"	3.5 mm	7 mm
• The clearance between the inner race end faces and inside housing walls should be equal. If cage and rollers are assembled	70 mm 3"	4 mm	8 mm
in this position the shaft can expand either side of the centre line by the amount shown in column 1 in the table right.	80 mm 3½"	5 mm	10 mm
	100 mm 4"	5.5 mm	11 mm
 When the position of the inner ring is satisfactory, remove the bottom half housing and tighten the clamp ring socket head cap screws and fit the cage as explained below. 	110 mm 4½"	8 mm	16 mm
cap screws and ne the cage as explained below.	120 mm 5"	8.5 mm	17 mm
A greater degree of expansion allowance can be obtained, but only none direction. This is achieved by offsetting the inner race with	140 mm 5½"	9 mm	18 mm
respect to the housing. In this case the total amount of linear	160 mm	9 mm	

Tightening of the Locating Clamping Ring Screws

respect to the housing. In this case the total amount of linear

movement in service is given in column 2 of the table.

- When the inner race is in its final position, tighten all four clamping ring screws equally.
- Use the correct hexagon key and a torque wrench.
- Tap down the locating thrust rings with a nylon mallet to ensure that they are seating down correctly within the grooves.
- Re-tighten and repeat the tapping down until the screws are fully tight.
- Torque values for the various screw sizes are given in the tables at the end of this section. If a screw is lost it must be replaced using a High Tensile Socket Head Cap Screw Grade, 12.9.

9 mm

6'

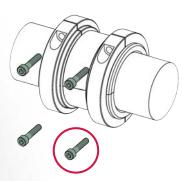
18 mm

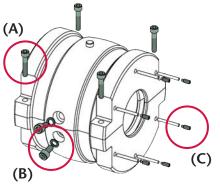
Fitting the Cage

- Grease the inner race roller track and cage.
- Place the cage halves around the inner race ensuring that the match mark numbers on the edge of each cage half are the same and coincide at one joint.
- Press the cage halves into the clip ensuring that the roll pins are fully located.
- Check that the cage assembly runs freely on the inner race.
- Fully pack the cage and roller assembly with the correct type of grease.

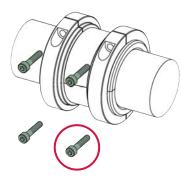
Final Fitting of the Housing

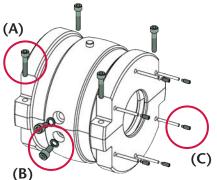
- Charge the bottom and upper housing halves with the correct amount of grease. Refer to page 27 for correct types and quantities of grease depending on the application and the speed.
- Lightly oil the spherical diameter of both housing and support and slide the bottom housing half into the support base.
- Lower the shaft with the assembled inner races and cages, until the rollers touch the tracks in the bottom half housing. Make sure that when the rollers in the retained bearing enter the outer race groove they do not damage the lips.
- Revolve the shaft by hand, the rollers should move freely between the thrust shoulders of the inner race and the lips of the retained outer race.
- Fit the upper housing half then tighten the housing joint screws. Check that there is no gap at the joints.

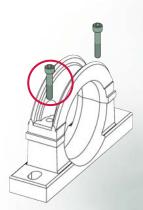

Fitting the Support Cap


- Place the support cap over the upper housing half and engage the locating dowels at the joint.
- Using a nylon mallet, gently tap the support cap down to close the gap at the joints.
- Fit the bolts and tighten just enough to hold the support joints closed.
- At this point, and only if it is safe to do so, the shaft should be run at low speed and if possible, with low loading. This will allow the spherical locating surfaces to correctly align. If running the shaft under power is not an option, the shaft should be rotated by hand to achieve this goal.
- Tighten the cap bolts fully using a torque wrench. At this point the support base bolts should also be checked and tightened as required. Torque values for housing and support screws are given in the table at the end of this section.

Light Series Screw Sizes, Key Sizes & Torque Values

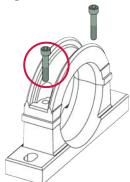


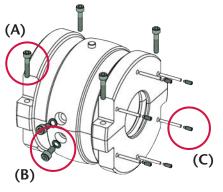



Shaft (d)	Clamping Ring*	Joint (A)	Housing Radial Retainer (B) Axial Retainers (HR only) (C)	Support
mm inch	Screw Key Torque Nm (lb.ft)	Screw Key <mark>Torque</mark> Nm (lb.ft)	Screw Key Torque Nm (lb.ft) Screw Key Nm (lb.ft)	Screw Key Torque Nm (lb.ft)
35 - 40 1 ³ /16 - 1 ¹ /2	M4 3 5 (3.6)	M4 3 4 (2.6)	M4 2 4 (2.6)	M8 6 27 (20)
45 - 50 111/16 - 2	M4 3 5 (3.6)	M4 3 4 (2.6)	M4 2 4 (2.6)	M8 6 27 (20)
60 - 65 2 ³ / ₁₆ - 2 ¹ / ₂	M4 3 5 (3.6)	M4 3 4 (2.6)	M4 2 4 (2.6)	M10 8 54 (40)
70 - 75 211/16 - 3	M4 3 5 (3.6)	M4 3 4 (2.6)	M4 2 4 (2.6)	M12 10 94 (69)
80 - 90 3 ³ / ₁₆ - 3 ¹ / ₂	M5 4 9 (7)	M5 4 7 (5)	M4 2 4 (2.6)	M16 14 231 (170)
100 - 105 311/16 - 4	M6 5 15 (11)	M6 5 11 (8)	M4 2 4 (2.6)	M16 14 231 (170)
110 - 115 4 ³ / ₁₆ - 4 ¹ / ₂	M6 5 15 (11)	M6 5 11 (8)	M6 3 11 (8)	M20 17 434 (320)
120 - 130 411/16 - 5	M6 5 15 (11)	M6 5 11 (08)	M6 3 11 (08)	M20 17 434 (320)
135 - 140 5 ³ / ₁₆ - 5 ¹ / ₂	M8 6 35 (26)	M8 6 27 (20)	M6 3 11 (08)	M20 17 434 (320)
150 - 155 511/16 - 6	M8 6 35 (26)	M8 6 27 (20)	M6 3 11 (08)	M20 17 434 (320)
160 6 ⁷ /16 - 6 ¹ /2	M8 6 35 (26)	M8 6 27 (20)	M6 3 11 (08)	M16 14 231 (170)
170 - 180 6 ¹¹ / ₁₆ - 7	M8 6 35 (26)	M8 6 27 (20)	M6 3 11 (08)	M16 14 231 (170)
190 - 200 7 ¹ /4 - 8	M8 6 35 (26)	M8 6 27 (20)	M10 8 54 (40) M6 3 11 (08)	M16 14 231 (170)
220 - 230 8 ¹ / ₂ - 9	M10 8 72 (53)	M10 8 54 (40)	M10 8 54 (40) M6 3 11 (08)	M16 14 231 (170)
240 - 250 9 ¹ / ₂ - 10	M10 8 72 (53)	M10 8 54 (40)	M10 8 54 (40) M6 3 11 (08)	M20 17 434 (320)
260 - 280 10 ¹ / ₂ - 11	M10 8 72 (53)	M10 8 54 (40)	M10 8 54 (40) M10 5 54 (40)	M20 17 434 (320)
300 11 ¹ / ₂ - 12	M10 8 72 (53)	M10 8 54 (40)	M10 8 54 (40) M10 5 54 (40)	M20 17 434 (320)
320 - 330 12 ¹ / ₂ - 13	M12 10 125 (92)	M12 10 94 (69)	M10 8 54 (40) M10 5 54 (40)	M20 17 434 (320)
340 - 350 14	M12 10 125 (92)	M12 10 94 (69)	M10 8 54 (40) M10 5 54 (40)	M20 17 434 (320)
360 - 380 15	M12 10 125 (92)	M12 10 94 (69)	M10 8 54 (40) M10 5 54 (40)	M20 17 434 (320)
400 16	M12 10 125 (92)	M12 10 94 (69)	M10 8 54 (40) M10 5 54 (40)	M20 17 434 (320)
420 17	M12 10 125 (92)	M12 10 94 (69)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
440 - 460 18	M12 10 125 (92)	M12 10 94 (69)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
480 19	M12 10 125 (92)	M12 10 94 (69)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
500 20	M16 14 309 (228)	M16 14 231 (170)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
530 21	M16 14 309 (228)	M16 14 231 (170)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
560 22	M16 14 309 (228)	M16 14 231 (170)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
580 23	M16 14 309 (228)	M16 14 231 (170)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)
600 24	M16 14 309 (228)	M16 14 231 (170)	M12 10 54 (40) M10 5 54 (40)	M20 17 434 (320)

* May be increased by up to 20% for high axial load applications

Medium Series Screw Sizes, Key Sizes & Torque Values





Sha	ft (d)	Clar	npin	g Ring*		J	oint	(A)		D USIN I Retain	I g Ier (B)		al Ret HR of	ainers nly) (C)	Suppo			oort
mm	inch	Screw	/ Key	Torque Nm (lb.ft)		Screw	Key	Torque Nm (lb.ft)	Screw	Key N	orque Im (lb.ft)	Screw	Key	Torque Nm (lb.ft)		Screw	Кеу	Torque Nm (lb.ft)
45 - 50	111/16 - 2	M5	4	9 (7)	1 [M5	4	7 (5)				M4	2	4 (2.6)		M10	8	54 (40)
60 - 65	2 ³ / ₁₆ - 2 ¹ / ₂	M5	4	9 (7)		M5	4	7 (5)				M4	2	4 (2.6)		M12	10	94 (69)
70 - 75	211/16 - 3	M6	5	15 (11)		M6	5	11 (08)				M4	2	4 (2.6)		M16	14	231 (170)
80 - 90	3 ³ / ₁₆ - 3 ¹ / ₂	M6	5	15 (11)		M6	5	11 (08)				M4	2	4 (2.6)		M16	14	231 (170)
100 - 105	311/16 - 4	M6	5	15 (11)		M6	5	11 (8)				M4	2	4 (2.6)		M20	17	434 (320)
110 - 115	4 ³ / ₁₆ - 4 ¹ / ₂	M8	6	35 (26)		M8	6	27 (20)				M6	3	11 (8)		M20	17	434 (320)
120 - 130	4 ¹¹ / ₁₆ - 5	M8	6	35 (26)		M8	6	27 (20)		-		M6	3	11 (08)		M20	17	434 (320)
135 - 140	5 ³ / ₁₆ - 5 ¹ / ₂	M8	6	35 (26)		M8	6	27 (20)				M6	3	11 (08)		M20	17	434 (320)
150 - 155	5 ¹¹ / ₁₆ - 6	M8	6	35 (26)		M8	6	27 (20)				M6	3	11 (08)		M20	17	434 (320)
160 - 170	6 ⁷ / ₁₆ - 6 ¹ / ₂	M10	8	72 (53)		M10	8	54 (40)				M6	3	11 (08)		M20	17	434 (320)
180	6 ¹¹ / ₁₆ - 7	M10	8	72 (53)		M10	8	54 (40)	M10	8	54 (40)	M6	3	11 (08)		M20	17	434 (320)
190 - 200	7 ¹ / ₄ - 8	M12	10	125 (92)		M12	10	94 (69)	M10	8	54 (40)	M6	3	11 (08)		M20	17	434 (320)
220 - 230	8 ¹ / ₂ - 9	M12	10	125 (92)		M12	10	94 (69)	M10	8	54 (40)	M6	3	11 (08)		M20	17	434 (320)
240 - 260	9 ¹ / ₂ - 10	M12	10	125 (92)		M12	10	94 (69)	M10	8	54 (40)	M10	5	54 (40)		M20	17	434 (320)
280	10 ¹ / ₂ - 11	M16	14	309 (228)		M16	14	231 (170)	M10	8	54 (40)	M10	5	54 (40)		M20	17	434 (320)
300	11 ¹ /2 - 12	M16	14	309 (228)		M16	14	231 (170)	M10	8	54 (40)	M10	5	54 (40)		M20	17	434 (320)
320 - 330	12 ¹ / ₂ - 13	M16	14	309 (228)		M16	14	231 (170)	M10	8	54 (40)	M10	5	54 (40)		M20	17	434 (320)
340 - 360	14	M16	14	309 (228)		M16	14	231 (170)	M12	10	54 (40)	M10	5	54 (40)		M20	17	434 (320)
380	15	M16	14	309 (228)		M16	14	231 (170)	M12	10	54 (40)	M10	5	54 (40)		M20	17	434 (320)
400	16	M16	14	309 (228)		M16	14	231 (170)	M12	10	54 (40)	M10	5	54 (40)		M20	17	434 (320)
420	17	M16	14	309 (228)		M16	14	231 (170)	M12	10	54 (40)	M10	5	54 (40)		M20	17	434 (320)
440 - 460	18	M16	14	309 (228)		M16	14	231 (170)	M12	10	54 (40)	M10	5	54 (40)		M20	17	434 (320)
480	19	M20	17	600 (442)		M20	17	434 (320)	M12	10	54 (40)	M10	5	54 (40)		M24	19	760 (560)
500	20	M20	17	600 (442)		M20	17	434 (320)	M12	10	54 (40)	M10	5	54 (40)		M24	19	760 (560)
530	21	M20	17	600 (442)		M20	17	434 (320)	M12	10	54 (40)	M10	5	54 (40)		M24	19	760 (560)
560	22	M20	17	600 (442)		M20	17	434 (320)	M12	10	54 (40)	M10	5	54 (40)		M24	19	760 (560)
580	23	M20	17	600 (442)		M20	17	434 (320)	M12	10	54 (40)	M10	5	54 (40)		M24	19	760 (560)
600	24	M20	17	600 (442)		M20	17	434 (320)	M12	10	54 (40)	M10	5	54 (40)		M24	19	760 (560)

* May be increased by up to 20% for high axial load applications

Heavy Series Screw Sizes, Key Sizes & Torque Values

Shaft (d)	Clamping Ring*			ping Ring* _{Joint} (A)			Housing Radial Retainer (B)			Axial Retainers (HR only) (C)				Support				
mm ir	nch	Screw	Key	Torque Nm (lb.ft)	Screw	Key	Torque Nm (lb.ft)	Screw	Key	Torque Nm (lb.ft)	Screw	Key	Torque Nm (lb.ft)		Screw	Key	Torque Nm (lb.ft)		
100 - 105 311/	16 - 4	M10	8	72 (53)	M10) 8	54 (40)	M10	8	54 (40)	M6	3	11 (08)] [M16	14	231 (170)		
110 - 120 43/16	- 4 ¹ / ₂	M10	8	72 (53)	M10) 8	54 (40)	M10	8	54 (40)	M6	3	11 (08)		M16	14	231 (170)		
125 - 130 415/	16 - 5	M10	8	72 (53)	M10) 8	54 (40)	M10	8	54 (40)	M10	5	54 (40)		M16	14	231 (170)		
135 - 140 5 ³ / ₁₆	- 5 ¹ / ₂	M10	8	72 (53)	M10) 8	54 (40)	M10	8	54 (40)	M10	5	54 (40)		M20	17	434 (320)		
150 - 155 5"/	16 - 6	M10	8	72 (53)	M10) 8	54 (40)	M10	8	54 (40)	M10	5	54 (40)		M20	17	434 (320)		
160 - 170 6 ⁷ / ₁₆ ·	- 6 ¹¹ /16	M12	10	125 (92)	M12	2 10	94 (69)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
180 63/	4 - 7	M12	10	125 (92)	M12	2 10	94 (69)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
190 - 200 7 ¹ /-	4 - 8	M12	10	125 (92)	M12	2 10	94 (69)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
220 - 230 81/	2 - 9	M16	14	309 (228)	M1	5 14	231 (170)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
240 - 260 9 ¹ / ₂	- 10	M16	14	309 (228)	M1	5 14	231 (170)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
280 1	11	M20	17	600 (442)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
300 1	12	M20	17	600 (442)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M20	17	434 (320)		
320 - 330 1	13	M20	17	600 (442)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M24	19	760 (560)		
340 - 360 1	14	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M24	19	760 (560)		
380 - 400 15	- 16	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M24	19	760 (560)		
420 - 440 1	17	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M16	14	231 (170)		M24	19	760 (560)		
460 1	18	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M16	14	231 (170)		M24	19	760 (560)		
480 1	19	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M16	14	231 (170)		M24	19	760 (560)		
500 2	20	M24	19	997 (735)	M20) 17	434 (320)	M16	14	231 (170)	M10	5	54 (40)		M24	19	760 (560)		
530 2	21	M24	19	997 (735)	M20) 17	434 (320)	M16	14	231 (170)	M10	5	54 (40)		M24	19	760 (560)		
560 2	22	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M24	19	760 (560)		
580 2	23	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M24	19	760 (560)		
600 2	24	M24	19	997 (735)	M20) 17	434 (320)	M12	10	94 (69)	M10	5	54 (40)		M24	19	760 (560)		

* May be increased by up to 20% for high axial load applications

Shipping Weights

	Light Series											
mm	inch	Bearing Kg/lb	Housing Kg/lb	Support Kg/lb	Comp. Unit							
35	1 ³ /16	1.3	2.5	3	6.8							
40	1 ¹ /2	3	6	7	16							
45	1 ¹¹ /16	1.8	3.5	5	10.3							
50	2	4	8	11	23							
60	2 ³ / ₁₆	2.3	4.4	5.9	12.6							
65	2 ¹ / ₂	5	10	13	28							
70	2 ¹¹ / ₁₆	3.3	6.5	9.5	19.3							
75	3	7	14	21	42							
80	3 ³ / ₁₆	5	9	15	29							
90	3 ¹ / ₂	11	20	33	64							
100	3 ¹¹ / ₁₆	7	11	16	34							
105	4	15	24	35	74							
110	$\frac{4^{3}}{16}}{4^{1}}{2}$	10.5	16	24	50.5							
115		23	35	53	111							
120	4 ¹¹ / ₁₆	14	24	41	79							
130	5	31	53	90	174							
135	$\frac{5^{3}}{16}}{5^{1}}{2}$	17	27	49	93							
140		37	59	108	204							
150	5 ¹¹ / ₁₆	18	31	49	98							
155	6	40	68	108	216							
160	$\frac{6^{7}}{16}}{6^{1}}$	19 42	35 77	65 143	119 262							
170	6 ¹¹ / ₁₆	23	36	73	132							
180	7	51	79	161	291							
190	7 ¹ / ₄	26	45	92	163							
200	8	57	99	202	358							
220	8 ¹ / ₂	33	48	117	198							
230	9	73	106	257	436							
240	9 ¹ / ₂	42	60	147	249							
250	10	92	132	323	547							
260	10 ¹ / ₂	53	73	171	297							
280	11	117	161	376	654							
300	11 ¹ / ₂	60	89	199	348							
305	12	132	196	438	766							
320	12 ¹ / ₂	72	109	214	395							
330	13	158	240	471	869							
340	14	79	121	241	441							
350		174	266	530	970							
360	15	90	130	294	514							
380		198	286	647	1131							
400	16	96 211	145 319	315 693	556 1223							
420	17	105 231	155 341	323 711	583 1283							
440	18	119	156	377	652							
460		262	343	829	1434							
480	19	123 271	167 367	467 1027	757 1665							
500	20	139 306	198 436	449 988	786 1730							
530	21	180 396	220 484	502 1104	902 1984							
560	22	185 407	258 568	578 1272	1021 2247							
580	23	190 418	280 616	690 1518	1160 2552							
600	24	240 528	296 651	730 1606	1266 2785							

mminchBearingHousingSupportComp.451"//162.555.913.45026111330602'/163.789.521.2652'/28182147702"/165.6101530.675312223367803'/167121635903'/2152635761003"/161113244810542429531061154'/2344490180546689217613054628499813054668921761355'/162536721331405'/255791582921505''/163142801531606'/16401581182161706'/2881282604761806''/16476910122939091522225048782409'/27910827746425010174238609102127010'/28713432054128011191295704		Ν	Лediu	m Ser	ies	
50 2 6 11 13 30 60 $2^{1}/_{16}$ 3.7 8 9.5 21.2 65 $2^{1}/_{2}$ 8 18 21 47 70 $2^{1}/_{16}$ 5.6 10 15 30.6 80 $3^{1}/_{2}$ 15 26 35 76 100 $3^{1}/_{16}$ 11 13 24 48 105 4 24 29 53 106 110 $4^{1}/_{16}$ 15.5 20 41 76.5 115 $4^{1}/_{2}$ 34 44 90 168 120 $4^{1}/_{16}$ 21 28 49 98 130 5 46 62 108 216 135 $5^{1}/_{16}$ 31 42 80 153 150 5 6 68 92 176 336 160 $6^{1}/_{16}$ 40 58	mm	inch	Bearing Kg/lb	Housing Kg/lb	Support Kg/lb	Comp. Unit
50 2 6 11 13 30 60 $2^{1}/_{16}$ 3.7 8 9.5 21.2 65 $2^{1}/_{2}$ 8 18 21 47 70 $2^{1}/_{16}$ 5.6 10 15 30.6 80 $3^{1}/_{2}$ 15 26 35 76 100 $3^{1}/_{16}$ 11 13 24 48 105 4 24 29 53 106 110 $4^{1}/_{16}$ 15.5 20 41 76.5 115 $4^{1}/_{2}$ 34 44 90 168 120 $4^{1}/_{16}$ 21 28 49 98 130 5 46 62 108 216 135 $5^{1}/_{16}$ 31 42 80 153 150 $5^{1}/_{16}$ 47 68 138 253 150 $5^{1}/_{16}$ 47 68						
65 $2^{1}/_{2}$ 8 18 21 47 70 $2^{11}/_{16}$ 5.6 10 15 30.6 75 3 12 22 33 67 80 $3^{1}/_{16}$ 7 12 16 35 90 $3^{1}/_{2}$ 15 26 35 76 100 $3^{11}/_{16}$ 11 13 24 48 105 4 24 29 53 106 110 $4^{3}/_{16}$ 15.5 20 41 76.5 115 $4^{1}/_{2}$ 34 44 90 168 120 $4^{11}/_{16}$ 21 28 49 98 130 5 46 62 108 216 135 5 79 158 292 150 150 5^{11}/_{16} 31 42 80 153 150 5 79 158 292 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
75 3 12 22 33 67 80 $3^3/_{16}$ 7 12 16 35 90 $3^1/_2$ 15 26 35 76 100 $3^{11}/_{16}$ 11 13 24 48 105 4 24 29 53 106 110 $4^1/_{16}$ 15.5 20 41 76.5 115 $4^1/_2$ 34 44 90 168 120 $4^{11}/_{16}$ 21 28 49 98 130 5 46 62 108 216 135 5/16 25 79 158 292 150 5^{11/_{16}} 40 58 118 216 170 6/2 88 128 260 476 180 6'1/_{16} 47 68 138 253 190 7'/4 59 86 192 337 <						
90 $3'/_2$ 15 26 35 76 100 $3''_{16}$ 11 13 24 48 105 4 24 29 53 106 110 $4'/_2$ 34 44 90 168 120 $4''_2$ 34 44 90 168 120 $4''_1'_{16}$ 21 28 49 98 130 5 46 62 108 216 135 5'/_2 55 79 158 292 150 5''/_16 31 42 80 153 155 6 68 92 176 336 160 6'/_16 40 58 118 216 170 6'/2 88 128 260 476 180 6''/16 47 59 86 192 337 200 8 130 189 422 741 <						
105 4 24 29 53 106 110 $4^3/_{16}$ 15.5 20 41 76.5 115 $4^1/_2$ 34 44 90 168 120 $4^{11}/_{16}$ 21 28 49 98 130 5 46 62 108 216 135 $5^1/_2$ 55 79 158 292 150 $5^{11}/_{16}$ 31 42 80 153 155 6 68 92 176 336 160 $6^7/_{16}$ 40 58 118 216 170 $6^1/_2$ 88 128 260 476 180 $6^{11}/_{16}$ 47 68 138 253 190 $7^1/_4$ 59 86 192 337 200 $8^1/_2$ 69 101 229 3						
115 $4^{1}/_{2}$ 344490168120 $4^{11}/_{16}$ 2128499813054662108216135 $5^{1}/_{16}$ 253672133140 $5^{1}/_{2}$ 5579158292150 $5^{11}/_{16}$ 31428015315566892176336160 $6^{7}/_{16}$ 4058118216170 $6^{1}/_{2}$ 88128260476180 7^{1103} 150304557190 $7^{1}/_{4}$ 59861923372008130189422741220 $8^{1}/_{2}$ 691012293992309152222504878240 $9^{1}/_{2}$ 79108277464260101742386091021270 $10^{1}/_{2}$ 8713432054133013330387847156434014184190477851360141872134908904201724526958611003801518721349089044018255270623114846018255270623114846018 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
130 5 46 62 108 216 135 $5^3/_{16}$ 25 36 72 133 140 $5^1/_2$ 55 79 158 292 150 $5^{11}/_{16}$ 31 42 80 153 155 6 68 92 176 336 160 $6^7/_{16}$ 40 58 118 216 170 $6^1/_2$ 88 128 260 476 180 7^7 103 150 304 557 190 $7^1/_4$ 59 86 192 337 200 8 130 189 422 741 200 8/2 69 101 229 399 230 9 152 222 504 878 240 9'/2 79 108 277 464 260 10 174 238 609 1021 <						
140 $5'/_2$ 55 79 158 292 150 $5''/_{16}$ 31 42 80 153 155 6 68 92 176 336 160 $6'/_{12}$ 88 128 260 476 180 $6''/_{16}$ 47 68 138 253 190 $7'/_{4}$ 59 86 192 337 200 8 130 189 422 741 220 $8'/_2$ 69 101 229 399 230 9 152 222 504 878 240 $9'/_2$ 79 108 277 464 260 10 174 238 609 1021 270 $10'/_2$ 87 134 320 541 280 11 191 295 704 1190 300 $11'/_2$ 125 132 372 629 305 12 275 290 818 1383 320 $12'/_2$ 150 176 385 711 330 13 330 387 847 1564 340 14 184 190 477 851 360 14 184 190 477 851 360 15 187 213 490 890 440 16 210 258 540 1008 440 16 269 566 1188 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
155 6 68 92 176 336 160 $6^7/_{16}$ 40 58 118 216 170 $6^7/_{16}$ 47 68 138 253 180 7^7 103 150 304 557 190 $7^7/_{4}$ 59 86 192 337 200 8 130 189 422 741 220 $8^7/_2$ 69 101 229 399 230 9 152 222 504 878 240 $9^7/_2$ 79 108 277 464 260 10 174 238 609 1021 270 $10^7/_2$ 87 134 320 541 280 11 191 295 704 1190 300 $11^7/_2$ 125 132 372 629 305 12 275 290 818 1383 320 $12^7/_2$ 150 176 385 711 330 13 330 387 847 1564 340 14 184 190 477 851 360 14 184 190 477 851 360 15 187 213 490 890 440 16 210 258 540 1008 420 17 245 269 586 1100 440 18 255 270 623 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	380	15				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	16				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	420	17				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18				
500 20 607 722 1639 2968 530 21 314 357 899 1570 560 22 341 785 1978 3454 560 22 341 385 960 1686 580 23 375 405 1001 1781 560 23 375 891 2202 3918 600 24 390 460 1056 1906	480	19				
530 21 691 785 1978 3454 560 22 341 385 960 1686 560 22 341 385 960 1686 580 23 375 405 1001 1781 500 24 390 460 1056 1906	500	20				
360 22 750 847 2112 3709 580 23 375 405 1001 1781 580 23 375 891 2202 3918 600 24 390 460 1056 1906	530	21				
360 23 825 891 2202 3918 600 24 390 460 1056 1906	560	22				3709
	580	23			2202	
	600	24	390 858	460 1012	1056 2323	1906 4193

Heavy Series

		Heav	y Seri	es	
mm	inch	Bearing Kg/lb	Housing Kg/lb	Support Kg/lb	Comp. Unit
		_			
·		_			
100 105	3 ¹¹ / ₁₆ 4	35 77	40 88	121 266	196 431
110 120	4 ³ / ₁₆ 4 ¹ / ₂	41 90	45 99	141 310	227 499
125 130	4 ¹⁵ / ₁₆ 5	42 92	46 101	156 343	244 536
135 140	5 ³ / ₁₆ 5 ¹ / ₂	50 110	51 112	197 433	298 655
150 155	5 ¹¹ / ₁₆ 6	59 130	75 165	261 574	395 869
160 170	6 ⁷ / ₁₆ 6 ¹¹ / ₁₆	74 163	87 191	291 640	452 994
175 180	6 ³ /4 7	83 183	91 200	338 744	512 1127
190 200	7 ¹ / ₄ 8	105 231	120 264	454 999	679 1494
220 230	8 ¹ / ₂ 9	151 332	164 361	408 1395	949 2088
240 260	9 ¹ / ₂ 10	153 337	174 383	540 1621	1064 2341
280	11	203 447	201 442	459 1010	863 1899
300	12	242 532	249 548	1019 2242	1510 3322
320	13	327 719	300 660	1116 2455	1743 3834
340 360	14	375 825	361 794	1620 3564	2356 5183
380 400	15 16	436 959	433 953	1538 3384	2407 5296
420 440	17	400 880	443 975	1014 2231	1857 4086
460	18	636 1399	274 603	1513 3329	2423 5331
500 530	20 21	700 1540	880 1936	1863 4099	3443 7575
560	22	675 1485	694 1527	1847 4063	3216 7075
580 600	23 24	700 1540	770 1694	1794 3947	3264 7181

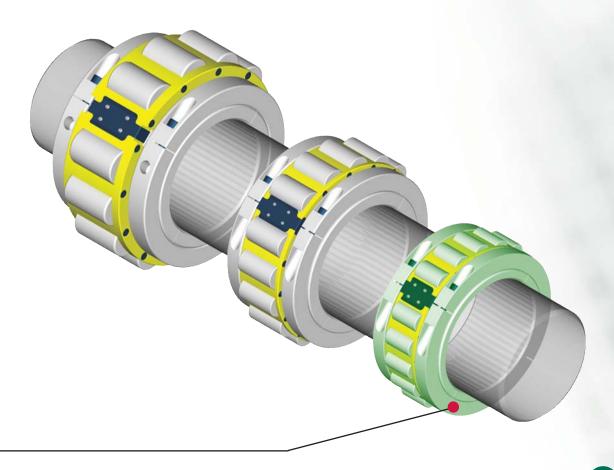
Pelletiser Drive Problem Solved by SRB

SRB were invited to supply product on a problem application at a major UK steel producer. A drive to a pelletiser supported on split roller bearings had become a major headache.

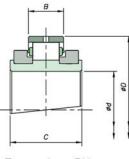
Regular bearing failures were being experienced; sometimes bearings lasted no longer than 3 or 4 months.

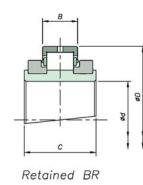
The latest design of a competitor's split bearing featuring a pressed steel cage was used in an attempt to extend bearing life, however, it quickly became clear that this product was unable to solve the problem.

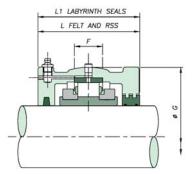
It was agreed that a brass caged SRB bearing should be fitted in a final attempt to solve the problem.


An engineer from SRB supervised the fitting of the bearing and, following a check of all mating components, the SRB bearing was mounted into the competitor's cast iron support.

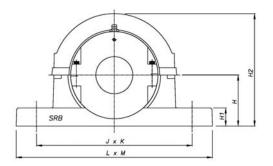
The bearings and housing have now operated for over two years without problems. The success of the SRB product in this application lead to many other opportunities with this customer.




Light Series bearing products are by far the most commonly utilised range within the Split Bearing family. With a wide variety of mounting and sealing solutions available, Light Series bearing units can readily be matched to an ever-increasing range of applications. If a standard catalogue product does not meet your requirements, SRB Technical Services will be happy to provide help and advice on your application.


Bearings, Housings & Supports	40mm to 150mm	Page	39 – 40
	160mm to 340mm	Page	41 – 42
	360mm to 600mm	Page	43 – 44
Flange Units		Page	45 – 46
Tensioning Units		Page	47 – 48
Hanger Units		Page	49

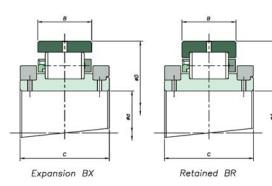
Light Bearing & Housing 40mm to 150mm

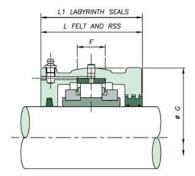


Expansion BX

Bearings Ratings Housing Reference ____

Shat	ft (d)	Refer	ence			Bear	ings R	atings				Hous	ing Ref	feren	ce	
mm	inch	Add <mark>BR</mark> fo Add <mark>BX</mark> fo e.g. LSM3	r expansion	Dynamic C _r (kN/lb)	Static C₀r (kN/lb)	Axial C₄ (kN/lb)	Max RPM	D	В	c	Add HR for Add HX for e.g. LSM35	expansion	G	F	L	Lı
35 40	1 ³ /16 1 ¹ /4 1 ⁷ /16 1 ¹ /2	LSM35 LSM40	LSE103 LSE104 LSE107 LSE108	65 14613	68 15287	3.20 719.38	5400	84.14 3.313	23.80 0.937	55.00 2.165	LSM35 LSM40	LSE103 LSE104 LSE107 LSE108	100.00 3.937	25 1.0	84 3.3	86 3.4
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	LSM45 LSM50	LSE111 LSE112 LSE115 LSE200	83 18659	87 19558	3.60 809.30	4630	98.42 3.875	25.40 1.000	60.00 2.362	LSM45 LSM50	LSE111 LSE112 LSE115 LSE200	117.48 4.625	25 1.0	96 3.8	98 3.9
55 60 65	2 ³ /16 2 ¹ /4 2 ⁷ /16 2 ¹ /2	LSM55 LSM60 LSM65	LSE203 LSE204 LSE207 LSE208	103 23155	115 25853	5.40 1213.95	3940	114.30 4.500	27.00 1.063	60.00 2.362	LSM55 LSM60 LSM65	LSE203 LSE204 LSE207 LSE208	134.94 5.313	32 1.3	102 4.0	104 4.1
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	LSM70 LSM75	LSE211 LSE212 LSE215 LSE300	138 31024	161 36194	7.60 1708.53	3310	133.35 5.250	31.80 1.252	65.00 2.559	LSM70 LSM75	LSE211 LSE212 LSE215 LSE300	157.16 6.187	38 1.5	112 4.4	114 4.5
80 85 90	3 ³ /16 3 ¹ /4 3 ⁷ /16 3 ¹ /2	LSM80 LSM85 LSM90	LSE303 LSE304 LSE307 LSE308	187 42039	231 51931	12.40 2787.59	2790	152.4 6.000	38.90 1.531	75.00 2.953	LSM80 LSM85 LSM90	LSE303 LSE304 LSE307 LSE308	177.80 7.000	50 2.0	134 5.3	136 5.4
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	LSM100 LSM105	LSE311 LSE312 LSE315 LSE400	288 64745	366 82280	16.00 3596.90	2340	174.62 6.875	45.30 1.783	85.00 3.346	LSM100 LSM105	LSE311 LSE312 LSE315 LSE400	203.20 8.000	50 2.0	132 5.2	134 5.3
110 115	$4^{3}/_{16}$ $4^{1}/_{4}$ $4^{7}/_{16}$ $4^{1}/_{2}$	LSM110 LSM115	LSE403 LSE404 LSE407 LSE408	316 71040	427 95993	18.60 4181.39	1970	203.20 8.000	46.90 1.846	90.00 3.543	LSM110 LSM115	LSE403 LSE404 LSE407 LSE408	231.78 9.125	64 2.5	140 5.5	142 5.6
120 125 130	$ \begin{array}{r} 4^{11}/_{16} \\ 4^{3}/_{4} \\ 4^{15}/_{16} \\ 5 \end{array} $	LSM120 LSM125 LSM130	LSE411 LSE412 LSE415 LSE500	363 81606	496 111505	22.20 4990.69	1740	222.25 8.750	54.00 2.126	95.00 3.740	LSM120 LSM125 LSM130	LSE411 LSE412 LSE415 LSE500	266.70 10.500	76 3.0	154 6.1	156 6.1
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	LSM135 LSM140	LSE503 LSE504 LSE507 LSE508	422 94869	585 131513	25.80 5799.99	1570	241.30 9.500	55.60 2.189	98.40 3.874	LSM135 LSM140	LSE503 LSE504 LSE507 LSE508	279.40 11.000	76 3.0	166 6.5	168 6.6
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	LSM150 LSM155 LSM160A	LSE511 LSE512 LSE515 LSE600	459 103187	664 149273	29.40 6609.30	1450	254.00 10.000	55.60 2.189	98.40 3.874	LSM150 LSM155 LSM160A	LSE511 LSE512 LSE515 LSE600	295.28 11.625	82 3.2	172 6.8	174 6.9

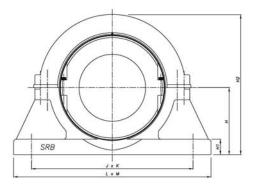

Light Support S01 - S10



	S01 - S10												
Sha mm	ft (d) inch	Support Reference	Н	Hı	H2	J x K	L x M	Bolts					
35 40	1 ³ / ₁₆ 1 ¹ / ₄ 1 ⁷ / ₁₆ 1 ¹ / ₂	S01	60 2.362	22 0.9	138 5.4	180 7.1	228 x 60 9 x 2.4	2 x M12					
45 50	1 ¹¹ / ₁₆ 1 ³ / ₄ 1 ¹⁵ / ₁₆ 2	S02	70 2.756	25 1.0	158 6.2	214 8.4	270 x 60 10.6 x 2.4	2 x M16					
55 60 65	2 ³ / ₁₆ 2 ¹ / ₄ 2 ⁷ / ₁₆ 2 ¹ / ₂	S03	80 3.150	32 1.3	180 7.1	234 9.2	280 x 70 11 x 2.8	2 x M16					
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	S04	95 3.740	38 1.5	208 8.2	270 10.6	330 x 76 13 x 3	2 x M20					
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	S05	112 4.409	44 1.7	252 9.9	320 12.6	380 x 90 15 x 3.5	2 x M24					
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	S06	125 4.921	52 2.0	272 10.7	354 13.9	420 x 102 16.5 x 4	2 x M24					
110 115	4 ³ / ₁₆ 4 ¹ / ₄ 4 ⁷ / ₁₆ 4 ¹ / ₂	S07	143 5.630	60 2.4	314 12.4	392 15.4	466 x 120 18.3 x 4.7	2 x M24					
120 125 130	4 ¹¹ / ₁₆ 4 ³ / ₄ 4 ¹⁵ / ₁₆ 5	S08	162 6.378	38 1.5	372 14.6	450 x 120 17.7 x 4.7	508 x 178 20 x 7	4 x M24					
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	S09	181 7.126	40 1.6	405 15.9	482 x 120 19 x 4.7	558 x 178 22 x 7	4 x M24					
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	S10	181 7.126	40 1.6	415 16.3	496 x 120 19.5 x 4.7	558 x 178 22 x 7	4 x M24					

40

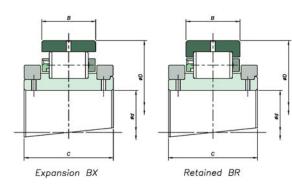
Light Bearing & Housing 160mm to 340mm

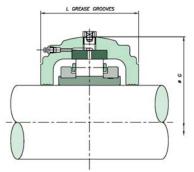


Sha	aft (d)	Refe	rence			Beari	ngs Ra	atings		
mm	inch	Add BR for Add BX for e.g. LSM3	r expansion	Dynamic C _r (kN/lb)	Static C₀r (kN/lb)	Axial C₃ (kN/lb)	Max RPM	D	В	C
160 170A	6 ⁷ / ₁₆ 6 ¹ / ₂	LSM160 LSM170A	LSE607 LSE608	583 131064	792 178049	33.00 7419	1320	273.05 10.750	60.30 2.374	109.00 4.291
170 175 180	6 ¹¹ / ₁₆ 6 ³ / ₄ 6 ¹⁵ / ₁₆ 7	LSM170 LSM175 LSM180	LSE611 LSE612 LSE615 LSE700	524 117800	828 186142	36.40 8183	1220	285.75 11.250	55.50 2.185	109.00 4.291
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	LSM190 LSM200	LSE704 LSE708 LSE715 LSE800	614 138033	990 222561	41.00 9217	1070	311.15 12.250	60.30 2.374	109.00 4.291
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	LSM220 LSM230	LSE808 LSE814 LSE900	659 148149	1062 238747	49.00 11016	930	342.90 13.500	63.50 2.500	115.00 4.528
240 250	9 ¹ / ₂ 9 ³ / ₄ 10	LSM240 LSM250	LSE908 LSE912 LSE1000	696 156467	1182 265724	57.80 12994	820	374.65 14.750	66.70 2.626	122.00 4.803
260 270 280	10 ¹ / ₂ 10 ³ / ₄ 11	LSM260 LSM270 LSM280	LSE1008 LSE1012 LSE1100	794 178498	1376 309337	66.80 15017	730	406.40 16.000	69.00 2.717	128.00 5.039
300 305	11 ¹ / ₂ 12	LSM300 LSM305	LSE1108 LSE1200	929 208848	1665 374307	78.20 17580	650	438.15 17.250	74.60 2.937	143.00 5.630
320 330	12 ¹ /2 13	LSM320 LSM330	LSE1208 LSE1300	920 206824	1674 376330	89.00 20008	590	463.55 18.250	74.60 2.937	136.00 5.354
340 350	14	LSM340 LSM350	LSE1400	967 217390	1824 410052	99.60 22391	540	488.95 19.250	74.60 2.937	136.00 5.354

Housing Reference

Add HR for Add HX for e.g. LSM35F	expansion	G	F	L	Lı
LSM160 LSM170A	LSE607 LSE608	311.15 12.250	76 3.0	172 6.8	192 7.6
LSM170 LSM175 LSM180	LSE611 LSE612 LSE615 LSE700	323.85 12.750	70 2.8	172 6.8	200 7.9
LSM190 LSM200	LSE704 LSE708 LSE715 LSE800	358.78 14.125	86 3.4	172 6.8	200 7.9
LSM220 LSM230	LSE808 LSE814 LSE900	387.35 15.250	82 3.2	178 7.0	216 8.5
LSM240 LSM250	LSE908 LSE912 LSE1000	419.10 16.500	90 3.5	188 7.4	222 8.7
LSM260 LSM270 LSM280	LSE1008 LSE1012 LSE1100	454.00 17.874	95 3.7	204 8.0	232 9.1
LSM300 LSM305	LSE1108 LSE1200	489.00 19.252	98 3.9	216 8.5	248 9.8
LSM320 LSM330	LSE1208 LSE1300	520.70 20.500	95 3.7	260 10.2	-
LSM340 LSM350	LSE1400	546.10 21.500	98 3.9	260 1 0.2	-


Light Support S11 - S19



Shaf nm	it (d) inch	Support Reference	Н	Hı	H ₂	J x K	L x M	Bolts
160 170A	6 ⁷ /16 6 ¹ /2	S11	213 8.386	32 1.3	430 16.9	368 x 114 14.5 x 4.5	508 x 178 20 x 7	4 x M24
170 175 180	6 ¹¹ /16 6 ³ /4 6 ¹⁵ /16 7	S12	235 9.252	35 1.4	470 18.5	388 x 128 15.3 x 5	534 x 190 21 x 7.5	4 x M24
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	\$13	248 9.764	38 1.5	495 19.5	422 x 140 16.6 x 5.5	572 x 204 22.5 x 8	4 x M24
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	S14	270 10.630	40 1.6	540 21.3	460 x 140 18.1 x 5.5	636 x 216 25 x 8.5	4 x M30
240 250	9 ¹ / ₂ 9 ³ / ₄ 10	S15	292 11.496	44 1.7	585 23.0	502 x 140 19.8 x 5.5	686 x 228 27 x 9	4 x M30
260 270 280	10 ¹ /2 10 ³ /4 11	S16	311 12.244	48 1.9	620 24.4	534 x 140 21 x 5.5	724 x 228 28.5 x 9	4 x M30
300 305	11 ¹ / ₂ 12	S17	343 13.504	50 2.0	685 27.0	584 x 178 23 x 7	762 x 254 32 x 10	4 x M30
320 330	12 ¹ /2 13	S18	368 14.488	54 2.1	735 28.9	622 x 178 24.5 x 7	812 x 254 32 x 10	4 x M36
340 350	14	S19	387 15.236	57 2.2	775 30.5	654 x 166 25.7 x 6.5	850 x 254 33.5 x 10	4 x M36

42

Light Bearing & Housing 360mm to 600mm

Sha	aft (d)	Refe	rence			Bear	ings R	atings					Housin	g Refe
mm	inch	Add <mark>BR</mark> fo Add <mark>BX</mark> fo e.g. LSM3	r expansion	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial C₄ (kN/lb)	Max RPM	D	В	с	Ad	d HR for r d HX for e . LSM35H	expansion	G
360 380	15	LSM360 LSM380	LSE1500	1011 227282	1975 443998	110.40 24819	500	520.70 20.500	76.20 3.000	140.00 5.512	-	.SM360 .SM380	LSE1500	571.50 22.500
400	16	LSM400	LSE1600	1054 236949	2125 477719	115.60 25988	460	546.10 21.500	76.20 3.000	140.00 5.512		.SM400	LSE1600	603.30 23.752
420	17	LSM420	LSE1700	1095 246166	2275 511440	121.00 27202	430	571.50 22.500	76.20 3.000	140.00 5.512	L	.SM420	LSE1700	628.70 24.752
440 460	18	LSM440 LSM460	LSE1800	1134 254933	2427 545611	127.20 28596	410	596.90 23.500	76.20 3.000	140.00 5.512		.SM440 .SM460	LSE1800	650.90 25.626
480	19	LSM480	LSE1900	1291 290228	2800 629465	132.60 29810	380	628.65 24.750	81.00 3.189	144.00 5.669		.SM480	LSE1900	682.60 26.874
500	20	LSM500	LSE2000	1336 300345	2974 668582	137.80 30979	360	654.05 25.750	80.20 3.157	168.00 6.614	L	.SM500	LSE2000	717.60 28.252
530	21	LSM530	LSE2100	1377 309562	3150 708148	140.60 31608	340	692.15 27.250	81.00 3.189	168.00 6.614	L	.SM530	LSE2100	755.70 29.752
560	22	LSM560	LSE2200	1419 319004	3324 747265	142.40 32013	330	717.55 28.250	81.00 3.189	168.00 6.614	L	.SM560	LSE2200	781.10 30.752
580	23	LSM580	LSE2300	1591 357671	3759 845057	144.00 32372	310	749.00 29.488	84.10 3.311	172.00 6.772	L	.SM580	LSE2300	816.00 32.126
600	24	LSM600	LSE2400	1638 368237	3956 889344	146.80 33002	300	774.70 30.500	84.10 3.311	172.00 6.772		.SM600	LSE2400	841.40 33.126

Reference

98

3.9

102

4.0

102

4.0

108

4.3

108

4.3

114

4.5

114

4.5

114

4.5

120

4.7

120

4.7

260

10.2

280

11.0

292

11.5

304 12.0

304

12.0

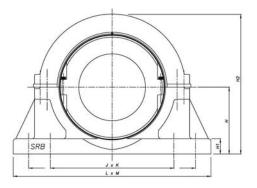
304

12.0

330 13.0

336

13.2


342

13.5

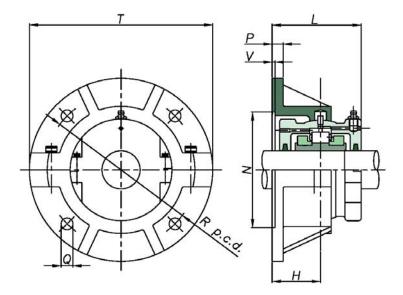
342

13.5

Light Support S20 - S29

	S20 - S29												
Shaf mm	ft (d) inch	Support Reference	н	Hı	H2	J x K	LxM	Bolts					
360 380	15	S20	397 15.630	60 2.4	795 31.3	676 x 166 26.6 x 6.5	902 x 254 35.5 x 10	4 x M36					
400	16	S21	432 17.008	67 2.6	865 34.1	724 x 166 28.5 x 6.5	940 x 254 37 x 10	4 x M36					
420	17	S22	445 17.520	67 2.6	890 35.0	756 x 166 29.8 x 6.5	966 x 254 38 x 10	4 x M36					
440 460	18	S23	464 18.268	70 2.8	925 36.4	788 x 190 31 x 7.5	1042 x 280 41 x 11	4 x M42					
480	19	S24	483 19.016	73 2.9	965 38.0	816 x 188 32.1 x 7.4	1092 x 304 43 x 12	4 x M42					
500	20	S25	489 19.252	76 3.0	980 38.6	844 x 216 33.2 x 8.5	1092 x 304 43 x 12	4 x M42					
530	21	S26	533 20.984	80 3.1	1065 41.9	904 x 206 35.6 x 8.1	1194 x 304 47 x 12	4 x M42					
560	22	S27	552 21.732	83 3.3	1110 43.7	936 x 206 36.9 x 8.1	1220 x 304 48 x 12	4 x M42					
580	23	S28	578 22.756	83 3.3	1156 45.5	1080 & 877 x 220 42.5 & 34.5 x 8.7	1372 x 304 54 x 12	8 x M36					
600	24	S29	597 23.504	90 3.5	1200 47.2	1118 & 908 x 200 44 & 35.7 x 7.9	1372 x 304 54 x 12	8 x M36					

Flange Units


When faced with flat horizontal or vertical faces, flange units offer a simple mounting solution. As with Pillow block supports, Flange units are produced with spherical location to accommodate standard bearing housings and provide easy initial alignment of shaft and equipment.

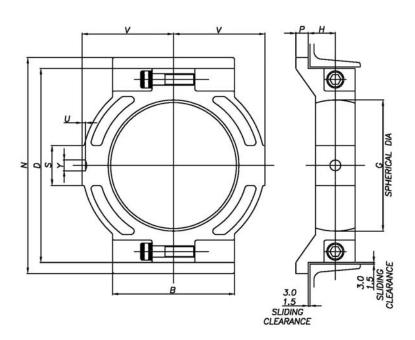
To facilitate positive location of the flange to the surface, the rear face is recessed (dimensions N & V). This allows for a spigot (Tolerance f8) to be located into the flange.

Bearing inspection is simply a matter of removing the top half of the flange and housing. Bearing replacement may also be achieved in the same manner if required. When integrating flange units into new applications, it should be noted that a maximum radial load equivalent to $0.26C_{or}$ is permissible. A maximum axial load of $0.25C_{a}$ must also be taken into account for applications with thrust loading. Units for vertically oriented shafts may also need special consideration given to sealing arrangements.

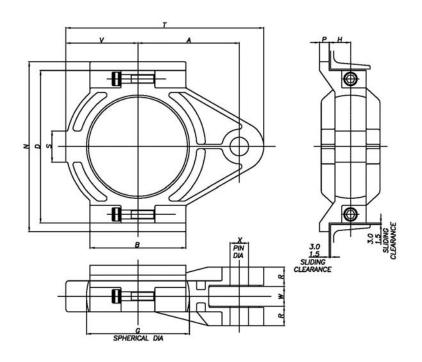
As always, SRB Technical Services will be happy to advise on any application issues.

Light Support 40mm - 300mm Flanges

	Light Series 40mm - 300mm Flanges													
Sha mm	ıft (d) inch	Flange Reference	т	Bolts	R	Р	Н	Ν	v	L				
35 40	1 ³ /16 1 ¹ /4 1 ⁷ /16 1 ¹ /2	F01	204 8.0	4 x M12	164 6.5	13 0.5	51 2.0	119.06 4.687	3 0.1	94 3.7				
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	F02	216 8.5	4 x M12	180 7.1	13 0.5	57 2.2	136.52 5.375	3 0.1	106 4.2				
55 60 65	$\begin{array}{c} 2^{3}/_{16} \\ 2^{1}/_{4} \\ 2^{7}/_{16} \\ 2^{1}/_{2} \end{array}$	F03	260 10.2	4 x M12	218 8.6	16 0.6	67 2.6	166.96. 571	3 0.1	120 4.7				
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	F04	286 11.3	4 x M12	242 9.5	16 0.6	73 2.9	192.09 7.563	3 0.1	130 5.1				
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	F05	330 13.0	4 x M16	274 10.8	19 0.7	79 3.1	215.98 500	3 0.1	148 5.8				
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	F06	356 14.0	4 x M16	302 11.9	19 0.7	86 3.4	244.47 9.625	3 0.1	154 6.1				
110 115	$\begin{array}{c} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array}$	F07	382 15.0	4 x M16	334 13.1	22 0.9	92 3.6	276.22 10.875	3 0.1	164 6.5				
120 125 130	4 ¹¹ / ₁₆ 4 ³ / ₄ 4 ¹⁵ / ₁₆ 5	F08	432 17.0	4 x M24	374 14.7	22 0.9	98 3.9	314.32 12.375	3 0.1	176 6.9				
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	F09	444 17.5	4 x M24	384 15.1	25 1.0	98 3.9	317.51 2.500	3 0.1	182 7.2				
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	F10	470 18.5	4 x M24	412 16.2	25 1.0	114 4.5	346.07 13.625	3 0.1	202 8.0				
160 170A	6 ⁷ / ₁₆ 6 ¹ / ₂	F11	496 19.5	4 x M24	426 16.8	25 1.0	105 4.1	352.42 13.875	3 0.1	202 8.0				
170 175 180	6 ¹¹ / ₁₆ 6 ³ / ₄ 6 ¹⁵ / ₁₆ 7	F12	508 20.0	4 x M24	438 17.2	29 1.1	108 4.3	365.12 14.375	3 0.1	208 8.2				
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	F13	534 21.0	4 x M24	474 18.7	32 1.3	108 4.3	400.05 15.750	3 0.1	208 8.2				
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	F14	584 23.0	4 x M30	512 20.2	35 1.4	117 4.6	431.81 7.000	3 0.1	226 8.9				
240 250	9 ¹ / ₂ 9 ³ / ₄ 10	F15	610 24.0	4 x M30	542 21.3	35 1.4	117 4.6	463.55 18.250	3 0.1	228 9.0				
260 270 280	10 ¹ / ₂ 10 ³ / ₄ 11	F16	660 26.0	4 x M30	584 23.0	38 1.5	124 4.9	504.82 19.875	3 0.1	240 9.4				
300 305	11 ¹ / ₂ 12	F17	712 28.0	4 x M30	626 24.6	38 1.5	133 5.2	539.75 21.250	3 0.1	258 10.2				

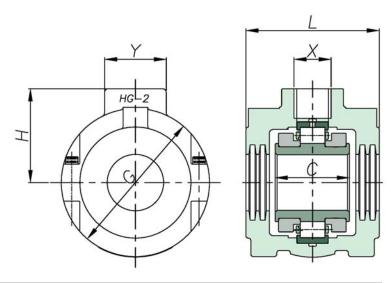

For Bearings and Housings see pages 39 - 44

Tensioning Units


This type of split unit can be found in use on materials handling equipment in many industries. Take up units provide an efficient and readily accessible means of tensioning conveyor systems and large scale drives.

The units consist of either push type or pull type sliding supports into which standard housings and bearings may be mounted. When integrating tensioning units into new applications, it should be noted that a maximum radial load equivalent to $0.3C_{or}$ is permissible. As with all SRB Units, a wide variety of sealing solutions may be applied dependant on the environment and application. Please contact SRB Technical Services for assistance.

Tensioning Units TT/TP Light Series 40mm to 150mm


Sha	ıft (d)	Supj Refer	port ence													
mm	inch	Tension Type	Push Type	В	Ν	D	v	Р	Н	L	S	А	т	Х	w	R
35 40	1 ³ /16 1 ¹ /4 1 ⁷ /16 1 ¹ /2	TT01	TP01	102 4.0	172 6.8	153 6.0	76 3.0	14 0.6	29 1.1	86 3.4	25 1.0	114 4.5	216 8.5	20 0.8	25 1.0	24 0.9
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	TT02	TP02	114 4.5	204 8.0	178 7.0	88 3.5	16 0.6	29 1.1	98 3.9	29 1.1	128 5.0	242 9.5	24 0.9	25 1.0	25 1.0
55 60 65	$2^{3}/_{16}$ $2^{1}/_{4}$ $2^{7}/_{16}$ $2^{1}/_{2}$	TT03	TP03	128 5.0	235 9.3	203 8.0	102 4.0	20 0.8	32 1.3	104 4.1	38 1.5	146 5.7	280 11.0	24 0.9	30 1.2	29 1.1
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	TT04	TP04	152 6.0	266 10.5	229 9.0	114 4.5	22 0.9	40 1.6	114 4 .5	41 1.6	158 6.2	305 12.0	24 0.9	30 1.2	114 4.5
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	TT05	TP05	190 7.5	318 12.5	280 11.0	140 5.5	22 0.9	40 1.6	136 5.4	51 2.0	190 7.5	368 14.5	30 1.2	38 1.5	35 1.4
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	TT06	TP06	204 8.0	342 13.5	305 12.0	152 6.0	22 0.9	43 1.7	134 5.3	51 2.0	210 8.3	414 16.3	36 1.4	44 1.7	35 1.4
110 115	$ \begin{array}{r} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array} $	TT07	TP07	216 8.5	382 15.0	343 13.5	162 6.4	22 0.9	48 1.9	142 5.6	70 2.8	228 9.0	445 17.5	42 1.7	44 1.7	41 1.6
120 125 130	4 ¹¹ / ₁₆ 4 ³ / ₄ 4 ¹⁵ / ₁₆ 5	TT08	TP08	254 10.0	420 16.5	381 15.0	190 7.5	25 1.0	51 2.0	156 6.1	76 3.0	260 10.2	508 20.0	42 1.7	44 1.7	44 1.7
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	TT09	TP09	266 10.5	438 17.2	400 15.7	196 7.7	25 1.0	54 2.1	168 6.6	76 3.0	266 10.5	514 20.2	42 1.7	44 1.7	48 1.9
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	TT10	TP10	266 10.5	464 18.3	426 16.8	204 8.0	25 1.0	57 2.2	174 6.9	86 3.4	280 11.0	546 21.5	48 1.9	50 2.0	51 2.0

Hanger Units

SRB Hanger Units are the optimum solution for the support of screw conveyor shafts. The unit comprises of a cast iron split housing into which standard SRB bearings are fitted. Provision of a drilled and tapped boss in one half of the housing allows for the unit to be mounted from the conveyor cross bracing or any other suitable surface. It is recommended that some form of swivel fixing be incorporated into the mounting arrangement to allow for static alignment.

Due to the arduous conditions often found in screw conveyor applications, correct seal selection is critical. SRB Hanger units are available with many sealing variants, all of which can also be tailored to suit specific applications. When integrating hanging units into new applications, it should be noted that a maximum radial load equivalent to $0.3C_{or}$ is permissible. Please contact SRB Technical Services for further information.

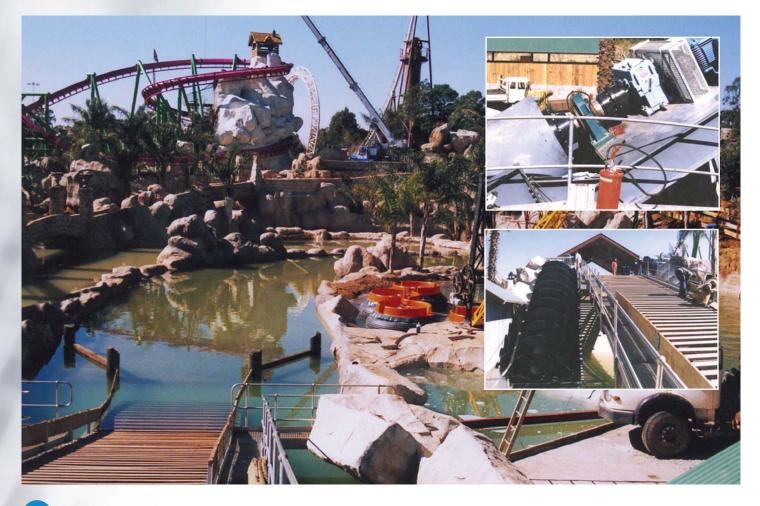
			Light Serie	s Hang	er Unit	S			
Shaf mm	ft (d) inch	Reference		с	G	L	н	х	Y
35 40	1 ³ /16 1 ¹ /4 1 ⁷ /16 1 ¹ /2	LSM35HG LSM40HG	LSE103HG LSE104HG LSE107HG LSE108HG	55.0 2.165	100 3.9	108 4.3	66 2.6	M30	50 2.0
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	LSM45HG LSM50HG	LSE111HG LSE112HG LSE115HG LSE200HG	60.0 2.362	117 4.6	108 4.3	76 3.0	M30	50 2.0
55 60 65	2 ³ /16 2 ¹ /4 2 ⁷ /16 2 ¹ /2	LSM55HG LSM60HG LSM65HG	LSE203HG LSE204HG LSE207HG LSE208HG	60.0 2.362	135 5.3	108 4.3	82 3.2	M30	50 2.0
70 75	2 ¹¹ /16 2 ³ /4 2 ¹⁵ /16 3	LSM70HG LSM75HG	LSE211HG LSE212HG LSE215HG LSE300HG	65.0 2.559	157 6.2	130 5.1	92 3.6	M30	50 2.0
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	LSM80HG LSM85HG LSM90HG	LSE303HG LSE304HG LSE307HG LSE308HG	75.0 2.953	178 7.0	146 5.7	114 4.5	M36	76 3.0
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	LSM100HG LSM105HG	LSE311HG LSE312HG LSE315HG LSE400HG	85.0 3.346	203 8.0	152 6.0	128 5.0	M36	76 3.0
110 115	$\begin{array}{c} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array}$	LSM110HG LSM115HG	LSE403HG LSE404HG LSE407HG LSE408HG	90.0 3.543	232 9.1	156 6.1	140 5.5	M36	76 3.0

Zambesi Rapid Water Ride

SRB have supplied ground breaking split bearing assemblies to resolve the support problems for the twin ascender screw providing water to the massive Zambesi Rapid Water ride in the Gold Reef City theme park, RSA.

The lower bearings, traditionally of an inefficient plain bearing design, are completely submerged in water. The water also contains sand and silt in suspension as a result of the constant churning. This forms an abrasive solution.

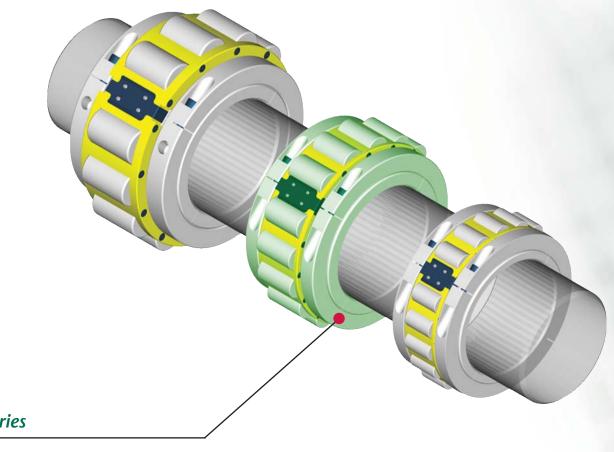
In contrast, the upper bearing, though in dry conditions, must accommodate some 16 tonnes of thrust load.

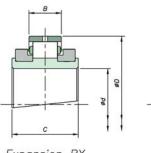

The screw conveyors are 11m long and 2.7m diameter angled 30 degrees and rotating at 27.5 rpm. Together, the twin units are capable of supplying 7 cubic meters of water per second (25,200 tonnes per hour).

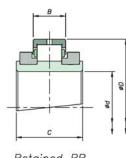
The lower bearing, a Light Series 200mm diameter,

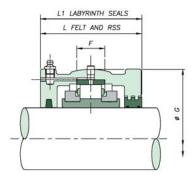
features sealing adequate to exclude water and other contaminants from the bearing enclosure. This is achieved via an arrangement of two lip seals with garter springs with a central grease feed. The sealing efficiency and grease purge provides long term reliable operation.

The upper bearing, a Medium Series 250mm diameter, was designed to accommodate the large axial load. The load is carried between the inner race shoulder on one side and the outer race lip on the other. Both shoulders and lips are specially designed to facilitate the generation of an oil film between the sliding surfaces of roller ends and lips, thereby reducing wear and limiting temperature generation.

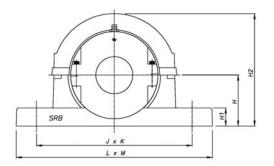

The bearings operate in an ambient temperature of up to 40°C and have now run problem free for over six years. This illustrates how SRB can design and manufacture units to accept conditions outside of the normal perceived split bearing capabilities.


Medium Series Product


Medium Series bearing products can be utilised in applications requiring higher load carrying capacity. Under nominal conditions, Medium Series may also be selected to provide an extended bearing life when compared to Light Series. Medium Series offers the same range of mounting and sealing solutions as Light Series, with the exception of Hanger units. If a standard catalogue product does not meet your requirements, SRB Technical Services will be happy to provide help and advice on your application.

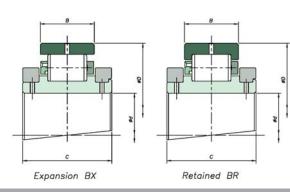

Bearings, Housings & Supports	50mm to 150mm	Page	53 – 54
	160mm to 340mm	Page	55 - 56
	380mm to 600mm	Page	57 - 58
Flange Units		Page	59 - 60
Tensioning Units		Page	61 – 62

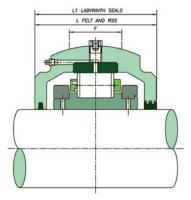
Medium Bearing & Housing 50mm to 150mm



Sha	aft (d)	Refe	ence			Bear	rings F	latings		
mm	inch	Add <mark>BR</mark> for Add <mark>BX</mark> for e.g. MSM5	• expansion	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial Cª (kN/lb)	Max RPM	D	В	с
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	MSM45 MSM50	MSE111 MSE112 MSE115 MSE200	121 27202	127 28551	6.20 1394	4350	107.95 4.250	35.00 1.378	67.50 2.657
55 60 65	2 ³ / ₁₆ 2 ¹ / ₄ 2 ⁷ / ₁₆ 2 ¹ / ₂	MSM55 MSM60 MSM65	MSE203 MSE204 MSE207 MSE208	168 37768	190 42714	8.80 1978	3680	127.00 5.000	38.90 1.531	72.30 2.846
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	MSM70 MSM75	MSE211 MSE212 MSE215 MSE300	258 58001	300 67443	10.60 2383	3080	149.22 5.875	46.10 1.815	82.60 3.252
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	MSM80 MSM85 MSM90	MSE303 MSE304 MSE307 MSE308	297 66768	353 79358	17.80 4002	2520	169.86 6.687	48.40 1.906	89.70 3.531
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	MSM100 MSM105	MSE311 MSE312 MSE315 MSE400	388 87226	491 110381	25.00 5620	2130	193.68 7.625	51.60 2.031	92.10 3.626
110 115	$\begin{array}{c} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array}$	MSM110 MSM115	MSE403 MSE404 MSE407 MSE408	454 102063	592 133087	31.20 7014	1820	228.60 9.000	57.20 2.252	100.00 3.937
120 125 130	4 ¹¹ / ₁₆ 4 ³ / ₄ 4 ¹⁵ / ₁₆ 5	MSM120 MSM125 MSM130	MSE411 MSE412 MSE415 MSE500	525 118025	700 157366	38.20 8588	1600	254.00 10.000	63.50 2.500	114.30 4.500
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	MSM135 MSM140	MSE503 MSE504 MSE507 MSE508	600 134885	817 183669	45.40 10206	1450	273.05 10.750	66.70 2.626	117.50 4.626
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆	MSM150 MSM155 MSM160A	MSE511 MSE512 MSE515	730 164111	1034 232453	52.40 11780	1320	292.10 11.500	68.30 2.689	123.80 4.874

	Housi	ng Refe	erenc	e	
Add HR for r Add HX for e e.g. MSM55	expansion	G	F	L	Lı
MSM45 MSM50	MSE111 MSE112 MSE115 MSE200	134.94 5.313	32 1.3	112 4.4	114 4.5
MSM55 MSM60 MSM65	MSE203 MSE204 MSE207 MSE208	157.16 6.187	38 1.5	124 4.9	126 5.0
MSM70 MSM75	MSE211 MSE212 MSE215 MSE300	177.80 7.000	50 2.0	138 5.4	140 5.5
MSM80 MSM85 MSM90	MSE303 MSE304 MSE307 MSE308	203.20 8.000	50 2.0	152 6.0	154 6.1
MSM100 MSM105	MSE311 MSE312 MSE315 MSE400	231.78 9.125	64 2.5	144 5.7	146 5.7
MSM110 MSM115	MSE403 MSE404 MSE407 MSE408	266.70 10.500	76 3.0	160 6.3	162 6.4
MSM120 MSM125 MSM130	MSE411 MSE412 MSE415 MSE500	295.28 11.625	82 3.2	182 7.2	184 7.2
MSM135 MSM140	MSE503 MSE504 MSE507 MSE508	323.85 12.750	90 3.5	186 7.3	188 7.4
MSM150 MSM155 MSM160A	MSE511 MSE512 MSE515 MSE600	336.55 13.250	95 3.7	202 8.0	204 8.0

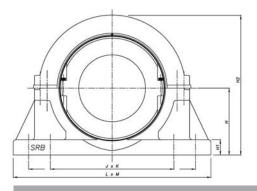

Medium Support S03 - S31



	\$03 - \$31												
Sha mm	ift (d) inch	Support Reference	н	Hı	H ₂	J x K	L×M	Bolts					
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	S03	80 3.150	32 1.3	180 7.1	234 9.2	280 x 70 11 x 2.8	2 x M16					
55 60 65	2 ³ / ₁₆ 2 ¹ / ₄ 2 ⁷ / ₁₆ 2 ¹ / ₂	S04	95 3.740	38 1.5	208 8.2	270 10.6	330 x 76 13 x 3	2 x M20					
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	S05	112 4.409	44 1.7	252 9.9	320 12.6	380 x 90 15 x 3.5	2 x M24					
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	S06	125 4.921	52 2.0	272 10.7	354 13.9	420 x 102 16.5 x 4	2 x M24					
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	S07	143 5.630	60 2.4	314 12.4	392 15.4	466 x 120 18.3 x 4.7	2 x M24					
110 115	4 ³ / ₁₆ 4 ¹ / ₄ 4 ⁷ / ₁₆ 4 ¹ / ₂	S08	162 6.378	38 1.5	372 14.6	450 x 120 17.7 x 4.7	508 x 178 20 x 7	4 x M24					
120 125 130	$\begin{array}{c} 4^{11}/_{16} \\ 4^{3}/_{4} \\ 4^{15}/_{16} \\ 5 \end{array}$	S10	181 7.126	40 1.6	415 16.3	496 x 120 19.5 x 4.7	558 x 178 22 x 7	4 x M24					
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	\$30	203 7.992	50 2.0	460 18.1	546 x 120 21.5 x 4.7	610 x 178 24 x 7	4 x M24					
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	\$31	210 8.268	50 2.0	470 18.5	558 x 128 22 x 5	636 x 204 25 x 8	4 x M24					

54

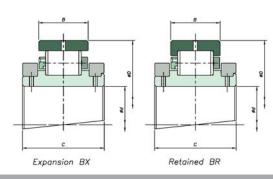
Medium Bearing & Housing 160mm to 340mm

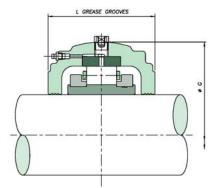


Sha	ift (d)	Reference		Bearings Ratings							
mm	inch	Add BR fo Add BX fo e.g. MSM	r expansion	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial C₄ (kN/lb)	Max RPM	D	В	с	
160	67/16	MSM160	MSE607	842	1175	61.40	1200	317.50	83.30	140.00	
170	6 ¹ / ₂	MSM170	MSE608	189289	264151	13803	1200	12.500	3.280	5.512	
	611/16		MSE611								
175	6 ³ / ₄	MSM175	MSE612	927	1357	71.20	1120	330.20	83.30	140.00	
180	615/16	MSM180	MSE615	208398	305066	16006	1120	13.000	3.280	5.512	
	7		MSE700								
	7 ¹ / ₄		MSE704								
190	7 ¹ / ₂	MSM190	MSE708	1013	1516	80.00	960	368.30	90.50	156.00	
200	715/16	MSM200	MSE715	227732	340810	17985	900	14.500	3.563	6.142	
	8		MSE800					_			
220	8 ¹ / ₂	MSM220	MSE808	1138	1668	89.80		393.70	90.50	163.00	
230	87/8	MSM230	MSE814	255833	374981	20188	850	15.500	3.563	6.417	
	9		MSE900								
240	9 ¹ / ₂	MSM240	MSE908	1240	1882	98.80		431.80	96.80	170.00	
250	9 ³ / ₄	MSM250	MSE912	278763	423091	22211	750	17.000	3.811	6.693	
260	10	MSM260	MSE1000								
270	10 ¹ / ₂	MSM270	MSE1008	1476	2357	113.80		463.55	101.60	186.00	
280	10 ³ /4	MSM280	MSE1012	331818	529875	25583	670	18.250	4.000	7.323	
	11		MSE1100								
300	11 ¹ /2	MSM300	MSE1108	1569	2607	129.00	610	495.30	103.20	193.00	
305	12	MSM305	MSE1200	352725	586077	29000	010	19.500	4.063	7.598	
320	12 ¹ / ₂	MSM320	MSE1208	1723	2922	144.20	550	527.05	106.40	192.00	
330	13	MSM330	MSE1300	387346	656892	32417	330	20.750	4.189	7.559	
340	14	MSM340	N 4651 400	1989	9 3403 159.20		500	565.15	115.90	200.00	
360	14	MSM360	MSE1400	447145	765025	35790	500	22.250	4.563	7.874	

Reference
Reierence

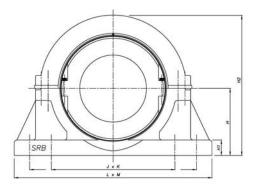
Add HR for Add HX for e.g. MSM1	r expansion	G	F	L	Lı
MSM160	MSE607	368.30	95	206	232
MSM170	MSE608	14.500	3.7	8.1	9.1
	MSE611				
MSM175	MSE612	381.00	95	222	242
MSM180	MSE615	15.000	3.7	8.7	9.5
	MSE700		_		
	MSE704				
MSM190	MSE708	425.50	105	235	258
MSM200	MSE715	16.752	4.1	9.3	10.2
	MSE800		_		
MSM220	MSE808	457.20	110	242	274
MSM220	MSE814	457.20 18.000	4.3	242 9.5	274 10.8
1013101230	MSE900	18.000	4.5	9.5	10.0
MSM240	MSE908	405.20	110	2.40	200
MSM250	MSE912	495.30	118	248	280
MSM260	MSE1000	19.500	4.6	9.8	11.0
	MSE1008				
MSM270	MSE1012	527.10	130	264	300
MSM280	MSE1100	20.752	5.1	10.4	11.8
MSM300	MSE1108	552.50	128	268	306
MSM305	MSE1200	21.752	5.0	10.6	12.0
MSM320	MSE1208	587.40	128	298	
MSM330	MSE1300	23.126	5.0	11.7	-
MSM340		628.70	146	305	
MSM350	MSE1400	24.752	5.7	12.0	-


Medium Support S32 - S40



Sha nm	aft (d) inch	Support Reference	н	Hı	H ₂	J x K	LxM	Bolts
160 170	6 ⁷ /16 6 ¹ /2	\$32	267 10.512	44 1.7	535 21.1	448 x 172 17.6 x 6.8	596 x 242 23.5 x 9.5	4 x M30
175 180	6 ¹¹ / ₁₆ 6 ³ / ₄ 6 ¹⁵ / ₁₆ 7	\$33	273 10.748	44 1.7	545 21.5	458 x 166 18 x 6.5	636 x 242 25 x 9.5	4 x M30
190 200	71/4 71/2 715/16 8	\$34	305 12.008	50 2.0	610 24.0	508 x 190 20 x 7.5	686 x 266 27 x 10.5	4 x M30
220 230	8 ¹ /2 8 ⁷ /8 9	\$35	324 12.756	50 2.0	650 25.6	550 x 190 21.7 x 7.5	750 x 280 29.5 x 11	4 x M30
240 250 260	9 ¹ /2 9 ³ /4 10	\$36	356 14.016	54 2.1	710 28.0	596 x 204 23.5 x 8	812 x 292 32 x 11.5	4 x M36
270 280	10 ¹ / ₂ 10 ³ / ₄ 11	S37	378 14.882	60 2.4	760 29.9	736 & 534 x 254 29 & 21 x 10	914 x 330 36 x 13	8 x M30
300 305	11 ¹ / ₂ 12	\$38	394 15.512	60 2.4	790 31.1	768 & 566 x 254 30.2 & 22.3 x 10	958 x 330 37.7 x 13	8 x M30
320 330	12 ¹ / ₂ 13	\$39	419 16.496	64 2.5	840 33.1	812 & 610 x 210 32 & 24 x 8.3	1016 x 292 40 x 11.5	8 x M30
340 360	14	S40	451 17.756	67 2.6	900 35.4	864 & 660 x 280 34 & 26 x 11	1092 x 368 43 x 14.5	8 x M36

S32 - S40

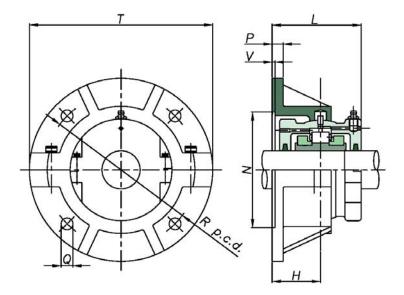

Medium Bearing & Housing 380mm to 600mm

Sha	aft (d)	Refe	rence			Bea	rings I	Ratings				Housi	ng Ref	ference		
mm	inch	Add BR for Add BX for e.g. MSM3	expansion	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial C₄ (kN/lb)	Max RPM	D	В	с		Add <mark>HR</mark> for retained Add HX for expansion e.g. MSM380HR	G	F	L	Lı
380	15	MSM380	MSE1500	1800 404656	3202 719838	174.40 39207	460	584.20 23.000	111.10 4.374	200.00 7.874	Ν	MSM380 MSE1500	647.70 25.500	146 5.7	305 12.0	_
400	16	MSM400	MSE1600	2105 473223	3793 852701	188.40 42354	430	615.95 24.250	115.90 4.563	200.00 7.874	Ν	MSM400 MSE1600	685.80 27.000	146 5.7	324 12.8	-
420	17	MSM420	MSE1700	2324 522456	4164 936105	202.00 45411	400	647.70 25.500	119.10 4.689	200.00 7.874	Ν	MSM420 MSE1700	717.60 28.252	146 5.7	350 13.8	-
440 460	18	MSM440 MSM460	MSE1800	2215 497952	4183 940376	216.00 48559	380	666.75 26.250	115.90 4.563	200.00 7.874		MSM440 MSM460 MSE1800	733.40 28.874	146 5.7	350 13.8	-
480	19	MSM480	MSE1900	2445 549658	4594 1032773	230.00 51706	360	698.50 27.500	119.10 4.689	223.00 8.780	Ν	MSM480 MSE1900	762.00 30.000	146 5.7	368 14.5	-
500	20	MSM500	MSE2000	2320 521557	4571 1027602	244.00 54853	340	717.55 28.250	115.90 4.563	226.00 8.898	Ν	MSM500 MSE2000	787.40 31.000	146 5.7	368 14.5	-
530	21	MSM530	MSE2100	2556 574612	5028 1130340	258.00 58001	330	762.00 30.000	119.10 4.689	229.00 9.016	Ν	MSM530 MSE2100	831.90 32.752	150 5.9	368 14.5	-
560	22	MSM560	MSE2200	2683 603163	5436 1222062	272.00 61148	310	793.75 31.250	122.20 4.811	233.00 9.173	Ν	MSM560 MSE2200	866.80 34.126	152 6.0	374 14.7	-
580	23	MSM580	MSE2300	2740 615977	5601 1259155	286.00 64295	300	812.80 32.000	119.10 4.689	232.00 9.134	Ν	MSM580 MSE2300	883.00 34.764	152 6.0	374 14.7	-
600	24	MSM600	MSE2400	2770 622721	5637 1267248	300.00 67443	290	838.20 33.000	119.10 4.689	214.00 8.425	Ν	MSM600 MSE2400	914.40 36.000	152 6.0	388 15.3	-

Medium Support S41 - S50

				S4 ⁻	1- \$50			
Shaf mm	ft (d) inch	Support Reference	н	Hı	H2	J x K	L x M	Bolts
380	15	S41	464 18.268	67 2.6	925 36.4	886 & 682 x 280 34.9 & 26.9 x 11	1092 x 368 43 x 14.5	8 x M36
400	16	S42	495 19.488	70 2.8	990 39.0	934 & 730 x 280 36.8 & 28.7 x 11	1168 x 368 46 x 14.5	8 x M36
420	17	S43	514 20.236	70 2.8	1030 40.6	972 & 768 x 280 38.3 & 30.2 x 11	1194 x 368 47 x 14.5	8 x M36
440 460	18	S44	533 20.984	73 2.9	1070 42.1	996 & 788 x 280 39.2 & 31 x 11	1244 x 368 49 x 14.5	8 x M36
480	19	S45	552 21.732	76 3.0	1110 43.7	1042 & 812 x 280 41 & 32 x 11	1270 x 368 50 x 14.5	8 x M36
500	20	S46	572 22.520	80 3.1	1145 45.1	1074 & 844 x 280 42.3 & 33.2 x 11	1296 x 368 51 x 14.5	8 x M36
530	21	S47	594 23.386	83 3.3	1180 46.5	1118 & 890 x 280 44 & 35 x 11	1398 x 368 55 x 14.5	8 x M36
560	22	S48	616 24.252	86 3.4	1230 48.4	1158 & 930 x 280 45.6 & 36.6 x 11	1422 x 382 56 x 15	8 x M42
580	23	S49	635 25.000	89 3.5	1270 50.0	1187 & 959 x 280 46.7 & 37.8 x 11	1448 x 382 57 x 15	8 x M42
600	24	S50	673 26.496	92 3.6	1345 53.0	1238 & 1010 x 280 48.7 & 39.8 x 11	1524 x 382 60 x 15	8 x M42

Flange Units


When faced with flat horizontal or vertical faces, flange units offer a simple mounting solution. As with Pillow block supports, Flange units are produced with spherical location to accommodate standard bearing housings and provide easy initial alignment of shaft and equipment.

To facilitate positive location of the flange to the surface, the rear face is recessed (dimensions N & V). This allows for a spigot (Tolerance f8) to be located into the flange.

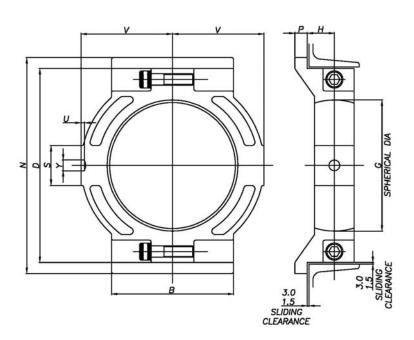
Bearing inspection is simply a matter of removing the top half of the flange and housing. Bearing replacement may also be achieved in the same manner if required. When integrating flange units into new applications, it should be noted that a maximum radial load equivalent to $0.26C_{or}$ is permissible. A maximum axial load of $0.25C_{a}$ must also be taken into account for applications with thrust loading. Units for vertically oriented shafts may also need special consideration given to sealing arrangements.

As always, SRB Technical Services will be happy to advise on any application issues.

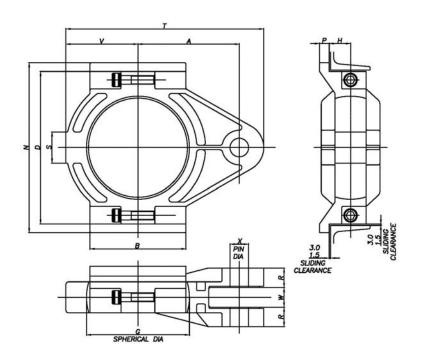
Medium Support 50mm to 300mm Flanges

Medium Series 50mm to 300mm Flanges

						500111111				
Sha mm	ft (d) inch	Flange Reference	т	Bolts	R	Р	н	Ν	V	L
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	F03	260 10.2	4 x M12	218 8.6	16 0.6	67 2.6	166.9 6.571	3 0.1	124 4.9
55 60 65	2 ³ / ₁₆ 2 ¹ / ₄ 2 ⁷ / ₁₆ 2 ¹ / ₂	F04	286 11.3	4 x M12	242 9.5	16 0.6	73 2.9	192.09 7.563	3 0.1	136 5.4
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	F05	330 13.0	4 x M16	274 10.8	19 0.7	79 3.1	215.9 8.500	3 0.1	150 5.9
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	F06	356 14.0	4 x M16	302 11.9	19 0.7	86 3.4	244.47 9.625	3 0.1	164 6.5
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	F07	382 15.0	4 x M16	334 13.1	22 0.9	92 3.6	276.22 10.875	3 0.1	166 6.5
110 115	$\begin{array}{c} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array}$	F08	432 17.0	4 x M24	374 14.7	22 0.9	98 3.9	314.32 12.375	3 0.1	180 7.1
120 125 130	4 ¹¹ / ₁₆ 4 ³ / ₄ 4 ¹⁵ / ₁₆ 5	F10	470 18.5	4 x M24	412 16.2	25 1.0	114 4.5	346.07 13.625	3 0.1	206 8.1
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	F30	508 20.0	4 x M24	444 17.5	25 1.0	114 4.5	377.82 14.875	3 0.1	208 8.2
150 155 160A	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	F31	534 21.0	4 x M24	466 18.3	25 1.0	124 4.9	393.70 15.500	3 0.1	226 8.9
160 170	6 ⁷ / ₁₆ 6 ¹ / ₂	F32	584 23.0	4 x M30	508 20.0	29 1.1	124 4.9	428.62 16.875	5 0.2	240 9.4
175 180	6 ¹¹ / ₁₆ 6 ³ / ₄ 6 ¹⁵ / ₁₆ 7	F33	596 23.5	4 x M30	524 20.6	32 1.3	130 5.1	444.50 17.500	5 0.2	252 9.9
190 200	7 ¹ / ₄ 7 ¹ / ₂ 7 ¹⁵ / ₁₆ 8	F34	648 25.5	4 x M30	572 22.5	32 1.3	137 5.4	492.12 19.375	5 0.2	266 10.5
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	F35	712 28.0	4 x M36	620 24.4	35 1.4	146 5.7	527.05 20.750	5 0.2	284 11.2
240 250 260	9 ¹ / ₂ 9 ³ / ₄ 10	F36	736 29.0	4 x M36	660 26.0	38 1.5	149 5.9	568.32 22.375	5 0.2	290 11.4
270 280	10 ¹ / ₂ 10 ³ / ₄ 11	F37	762 30.0	8 x M30	682 26.9	38 1.5	159 6.3	603.25 23.750	5 0.2	310 12.2
300 305	11 ¹ / ₂ 12	F38	788 31.0	8 x M30	708 27.9	41 1.6	162 6.4	628.65 24.750	5 0.2	316 12.4


For Bearings and Housings see pages 53 – 58

Tensioning Units


This type of split unit can be found in use on materials handling equipment in many industries. Take up units provide an efficient and readily accessible means of tensioning conveyor systems and large scale drives.

The units consist of either push type or pull type sliding supports into which standard housings and bearings may be mounted. When integrating tensioning units into new applications, it should be noted that a maximum radial load equivalent to $0.3C_{or}$ is permissible. As with all SRB Units, a wide variety of sealing solutions may be applied dependant on the environment and application. Please contact SRB Technical Services for assistance.

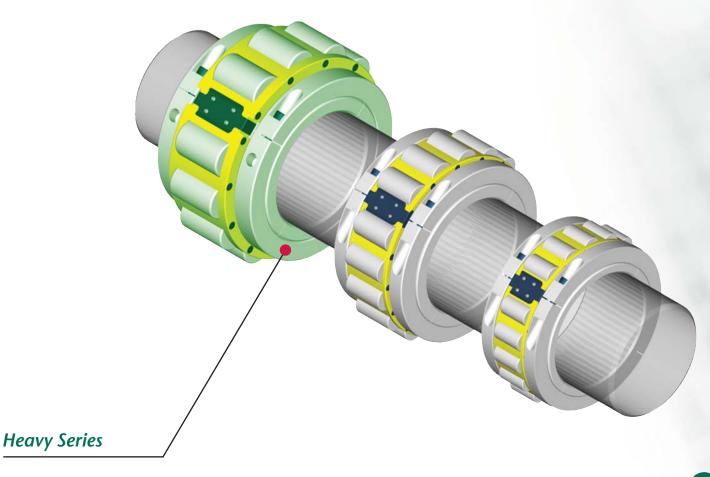
Tensioning Units TT/TP Medium Series 50mm to 150mm Support

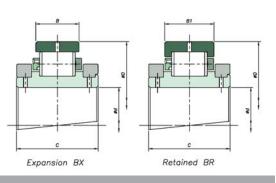
Shaft (d) Support Reference		port ence														
mm	inch	Tension Type	Push Type	В	N	D	v	Р	н	L	S	А	т	x	w	R
45 50	1 ¹¹ / ₁₆ 1 ³ / ₄ 1 ¹⁵ / ₁₆ 2	TT03	TP03	128 5.0	235 9.3	203 8.0	102 4.0	20 0.8	32 1.3	108 4.3	38 1.5	146 5.7	280 11.0	24 0.9	30 1.2	29 1.1
55 60 65	$\begin{array}{c} 2^{3}/_{16} \\ 2^{1}/_{4} \\ 2^{7}/_{16} \\ 2^{1}/_{2} \end{array}$	TT04	TP04	152 6.0	266 10.5	229 9.0	114 4.5	22 0.9	40 1.6	124 4.9	41 1.6	158 6.2	305 12.0	24 0.9	30 1.2	114 4.5
70 75	2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹⁵ / ₁₆ 3	TT05	TP05	190 7.5	318 12.5	280 11.0	140 5.5	22 0.9	40 1.6	131 5.2	51 2.0	190 7.5	368 14.5	30 1.2	38 1.5	35 1.4
80 85 90	3 ³ /16 3 ¹ /4 3 ⁷ /16 3 ¹ /2	TT06	TP06	204 8.0	342 13.5	305 12.0	152 6.0	22 0.9	43 1.7	141 5.6	51 2.0	210 8.3	414 16.3	36 1.4	44 1.7	35 1.4
100 105	3 ¹¹ /16 3 ³ /4 3 ¹⁵ /16 4	TT07	TP07	216 8.5	382 15.0	343 13.5	162 6.4	22 0.9	48 1.9	142 5.6	70 2.8	228 9.0	445 17.5	42 1.7	44 1.7	41 1.6
110 115	$\begin{array}{c} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array}$	TT08	TP08	254 10.0	420 16.5	381 15.0	190 7.5	25 1.0	51 2.0	156 6.1	76 3.0	260 10.2	508 20.0	42 1.7	44 1.7	44 1.7
120 125 130	$\begin{array}{c} 4^{11}/_{16} \\ 4^{3}/_{4} \\ 4^{15}/_{16} \\ 5 \end{array}$	TT10	TP10	266 10.5	464 18.3	426 16.8	204 8.0	25 1.0	57 2.2	173 6.8	86 3.4	280 11.0	546 21.5	48 1.9	50 2.0	51 2.0
135 140	5 ³ /16 5 ¹ /4 5 ⁷ /16 5 ¹ /2	TT30	TP30	280 11.0	502 19.8	464 18.3	222 8.7	25 1.0	60 2.4	178 7.0	92 3.6	298 11.7	584 23.0	48 1.9	50 2.0	54 2.1
150 155 160A	$5^{11}/_{16} \\ 5^{3}/_{4} \\ 5^{15}/_{16} \\ 6$	TT31	TP31	305 12.0	528 20.8	489 19.3	235 9.3	25 1.0	64 2.5	190 7.5	92 3.6	312 12.3	616 24.3	48 1.9	50 2.0	57 2.2

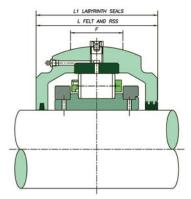
High Capacity Unit from SRB Reduces Downtime

A continuing problem with bearing failure on the raw mill drive pinions at a major Cement manufacturer has been solved by employing SRB's high capacity Heavy Series units. The 13 inch bore bearings originally used were prone to premature failure and a replacement was being fitted every twelve months. The job was taking over two days to complete and causing unnecessary cost and disruption meaning partial plant shutdowns in each instance.

Working closely with the end users engineering staff, SRB were able to provide a solution in the shape of our Heavy Series Units using high quality materials and drawing on years of field experience to improve on existing designs. The SRB units are produced with a machined brass cage as standard rather than the aluminium type found in older designs. A strong, bolt located "H" section clip ensures secure and accurate alignment of the cage halves further improving the performance characteristics.


To date the bearing has been in operation for some three years and is performing as well as when first fitted. The bearing has now been joined on site by numerous others as a result of maintenance staff actively seeking for applications which would benefit by specifying SRB units. As a result of continuing successes in both standard and specialised applications, SRB bearings are now in use at all sites throughout the UK.




Heavy Series bearing products offer solutions to the most demanding of load conditions. Bearings are supported by robust and durable mountings and can be equipped with a variety of sealing solutions. If a standard catalogue product does not meet your requirements, SRB Technical Services will be happy to provide help and advice on your application.

Bearings, Housings & Supports 100mm to 260mm	Page	65 – 66
280mm to 600mm	Page	67 – 68
Flange Units	Page	69

Heavy Bearing & Housing 100mm to 260mm

Sha	aft (d)	Refer	ence			Bear	ings R	atings				Housi
mm	inch	Add BR for Add BX for e.g. HSM10	expansion	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial C₄ (kN/lb)	Max RPM	D	B B1	С	Add HR for Add HX for e.g. HSM10	expansion
100 105	3 ¹¹ /16 3 ³ /4 3 ¹⁵ /16 4	HSM100 HSM105	HSE311 HSE312 HSE315 HSE400	653 146800	783 176025	31.20 7014	1820	254.00 10.000	84.20 3.315	136.00 5.354	HSM100 HSM105	HSE311 HSE312 HSE315 HSE400
110 115 120	4 ³ / ₁₆ 4 ¹ / ₄ 4 ⁷ / ₁₆ 4 ¹ / ₂	HSM110 HSM115 HSM120	HSE403 HSE404 HSE407 HSE408	656 147475	801 180072	39.10 8790	1640	266.70 10.500	87.30 3.437	147.00 5.787	HSM110 HSM115 HSM120	HSE403 HSE404 HSE407 HSE408
125 130	4 ¹⁵ / ₁₆ 5	HSM125 HSM130	HSE415 HSE500	753 169281	974 218964	49.00 11016	1500	279.40 11.000	73.10 2.878 84.20 3.315	140.00 5.512	HSM125 HSM130	HSE415 HSE500
135 140	$5^{3}/_{16}$ $5^{1}/_{4}$ $5^{7}/_{16}$ $5^{1}/_{2}$	HSM135 HSM140	HSE503 HSE504 HSE507 HSE508	827 185917	1084 243693	58.80 13219	1340	304.80 12.000	79.40 3.126 90.50 3.563	147.00 5.787	HSM135 HSM140	HSE503 HSE504 HSE507 HSE508
150 155	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	HSM150 HSM155	HSE511 HSE512 HSE515 HSE600	1037 233127	1325 297872	69.40 15602	1220	330.20 13.000	81.00 3.189 96.90 3.815	160.00 6.299	HSM150 HSM155	HSE511 HSE512 HSE515 HSE600
160 170	6 ⁷ / ₁₆ 6 ¹ / ₂ 6 ¹¹ / ₁₆	HSM160 HSM170	HSE607 HSE608 HSE611	1015 228181	1326 298097	79.20 17805	1110	355.60 14.000	103.20 4.063	171.00 6.732	HSM160 HSM170	HSE607 HSE608 HSE611
175 180	6 ³ /4 6 ¹⁵ /16 7	HSM175 HSM180	HSE612 HSE615 HSE700	1275 286631	1767 397238	89.00 20008	1030	374.65 14.750	92.10 3.626 108.80 4.283	178.00 7.008	HSM175 HSM180	HSE612 HSE615 HSE700
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	HSM190 HSM200	HSE704 HSE708 HSE715 HSE800	1423 319903	1958 440176	99.60 22391	880	419.10 16.500	97.70 3.846 118.30 4.657	191.00 7.520	HSM190 HSM200	HSE704 HSE708 HSE715 HSE800
220 230	8 ¹ /2 8 ⁷ /8 9	HSM220 HSM230	HSE808 HSE814 HSE900	1665 374307	2455 551906	109.40 24594	760	469.90 18.500	109.60 4.315 131.80 5.189	212.00 8.346	HSM220 HSM230	HSE808 HSE814 HSE900
240 260	9 ¹ / ₂ 9 ³ / ₄ 10	HSM240 HSM260	HSE908 HSE912 HSE1000	1694 380826	2519 566294	130.80 29405	700	482.60 19.000	105.60 4.157 124.60 4.906	211.00 8.307	HSM240 HSM260	HSE908 HSE912 HSE1000

Housing Reference

G

308.00

12.126

323.85

12.750

323.85

12.750

355.60

14.000

393.70

15.500

422.30

16.626

431.80

17.000

489.00

19.252

546.10

21.500

558.80

22.000

95

3.7

102

4.0

102

4.0

108

4.3

114

4.5

120

4.7

132

5.2

146

5.7

165

6.5

165

6.5

200

7.9

210

8.3

214

8.4

216

8.5

232

9.1

244

9.6

254

10.0

270

10.6

298

11.7

298

11.7

Lı

206

8.1

222

8.7

222

8.7

230

9.1

254

10.0

268

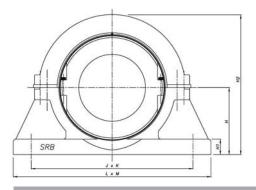
10.6

284

11.2

300

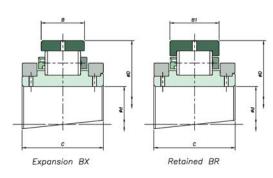
11.8

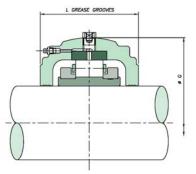

334

13.1

334

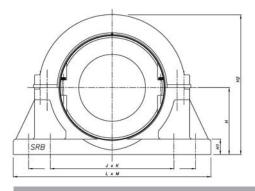
13.1


Heavy Support S54 - S63



					F - 303	_	_	
Sha mm	aft (d) inch	Support Reference	н	Hı	H2	J x K	L x M	Bolts
100 105	3 ¹¹ /16 3 ³ /4 3 ¹⁵ /16 4	\$54	191 7.520	38 1.5	405 15.9	438 x 82 17.2 x 3.2	514 x 152 20.2 x 6	4 x M24
110 115 120	4 ³ / ₁₆ 4 ¹ / ₄ 4 ⁷ / ₁₆ 4 ¹ / ₂	\$55	197 7.756	38 1.5	425 16.7	458 x 88 18 x 3.5	534 x 166 21 x 6.5	4 x M24
125 130	4 ¹⁵ / ₁₆ 5	\$56	203 7.992	48 1.9	435 17.1	470 x 96 18.5 x 3.8	546 x 166 21.5 x 6.5	4 x M24
135 140	5 ³ / ₁₆ 5 ¹ /4 5 ⁷ / ₁₆ 5 ¹ / ₂	\$57	229 9.016	54 2.1	485 19.1	514 x 102 20.2 x 4	622 x 178 24.5 x 7	4 x M30
150 155	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	\$58	254 10.000	57 2.2	535 21.1	558 x 120 22 x 4.7	666 x 204 26.2 x 8	4 x M30
160 170	6 ⁷ / ₁₆ 6 ¹ / ₂ 6 ¹¹ / ₁₆	\$59	267 10.512	60 2.4	570 22.4	628 x 140 24.7 x 5.5	736 x 228 29 x 9	4 x M30
175 180	6 ³ /4 6 ¹⁵ / ₁₆ 7	S60	279 10.984	64 2.5	580 22.8	636 x 152 25 x 6	762 x 254 30 x 10	4 x M30
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	S61	311 12.244	67 2.6	655 25.8	636 x 172 25 x 6.8	838 x 266 33 x 10.5	4 x M36
220 230	8 ¹ /2 8 ⁷ /8 9	S62	349 13.740	76 3.0	730 28.7	736 x 178 29 x 7	952 x 280 37.5 x 11	4 x M42
240 260	9 ¹ / ₂ 9 ³ / ₄ 10	S63	394 15.512	76 3.0	790 31.1	670 x 304 26.4 x 12	914 x 406 36 x 16	4 x M42

S54 - S63

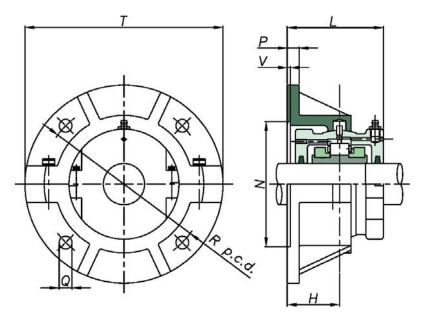

Heavy Bearing & Housing 280mm to 600mm

Sh	aft (d)	Reference		Bearings Ratings						Housing Reference						
mm	inch	Add <mark>BR</mark> for retained Add <mark>BX</mark> for expansion e.g. HSM280BR	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial Cª (kN/lb)	Max RPM	D	В	с	Ac	dd HR for dd HX for g. HSM28	expansion	G	F	L	Lı
280	11	HSM280 HSE1100	1936 435230	3115 700280	153.00 34396	620	495.30 19.500	139.70 5.500	244.00 9.606	ŀ	HSM280	HSE1100	571.50 22.500	165 6.5	356 14.0	356 14.0
300	12	HSM300 HSE1200	2114 475246	3194 718040	174.40 39207	560	558.80 22.000	139.70 5.500	244.00 9.606	· · ·	HSM300 HSM305	HSE1108 HSE1200	641.40 25.252	165 6.5	346 13.6	370 14.6
320	13	HSM320 HSE1300	2718 611031	4093 920143	198.80 44692	500	622.30 24.500	160.40 6.315	272.00 10.709		HSM320 HSM330	HSE1208 HSE1300	717.60 28.252	170 6.7	368 14.5	-
340 360	14	HSM340 HSM360 HSE1400	2686 603837	4421 993881	213.60 48019	460	615.95 24.250	158.00 6.220	279.00 10.984		HSM340 HSM350	HSE1400	704.90 27.752	196 7.7	432 17.0	_
380 400	15 16	HSM380 HSE1500 HSM400 HSE1600	3195 718265	5238 1177550	250.80 56382	420	685.80 27.000	166.70 6.563	292.00 11.496		HSM380 HSM400	HSE1500 HSE1600	774.70 30.500	202 8.0	400 15.7	_
420 440	17	HSM420 HSM440 HSE1700	3187 716466	5813 1306815	275.80 62002	360	700.00 27.559	160.00 6.299	284.00 11.181	+	HSM420	HSE1700	788.00 31.024	200 7.9	440 17.3	_
460	18	HSM460 HSE1800	3501 787056	6091 1369312	302.40 67982	340	740.00 29.134	170.00 6.693	294.00 11.575	· · ·	HSM440 HSM460	HSE1800	840.00 33.071	200 7.9	450 17.7	-
500 530	20 21	HSM500 HSE2000 HSM530 HSE2100	4324 972074	7603 1709223	347.00 78009	310	850.90 33.500	187.40 7.378	300.00 11.811	· · ·	HSM500 HSM530	HSE2000 HSE2100	958.90 37.752	204 8.0	495 19.5	-
560	22	HSM560 HSE2200	4448 999950	8781 1974048	382.60 86012	280	863.60 34.000	196.90 7.752	310.00 12.205	-	HSM560	HSE2200	958.90 37.752	204 8.0	490 19.3	_
580 600	23 24	HSM580 HSE2300 HSM600 HSE2400	4443 998826	8918 2004847	400 89924	270	890.00 35.039	184.00 7.244	310.00 12.205		HSM580 HSM600	HSE2300 HSE2400	990.00 38.976	204 8.0	490 19.3	-

Heavy Support S83 - S95

Sha mm	aft (d) inch	Support Reference	Н	Hı	H ₂	J x K	L x M	Bolts
280	11	\$83	368 14.488	70 2.8	785 30.9	742 & 502 x 178 29.2 & 19.8 x 7	940 x 280 37 x 11	8 x M36
300	12	S65	457	76	915 36.0	876 & 674 x 330 34.5 & 26.5 x 13	1092 x 420 43 x 16.5	8 x M36
320	13		518 20.394	80 3.1	1035	978 & 762 x 266 38.5 & 30 x 10.5	1194 x 356 47 x 14	8 x M36
340 360	14	S86	470 18.504	82 3.2	1000 39.4	928 & 660 x 190 36.5 & 26 x 7.5	1220 x 318 48 x 12.5	8 x M42
380 400	15 16	S68	559 22.008	92 3.6	1120 44.1	1036 & 806 x 292 40.8 & 31.7 x 11.5	1270 x 394 50 x 15.5	8 x M42
420 440	17	\$89	508 20.000	90 3.5	1075 42.3	990 & 690 x 210 39 & 27.2 x 8.3	1270 x 360 50 x 14.2	8 x M48
460	18	\$90	550 21.654	95 3.7	1165 45.9	1080 & 780 x 220 42.5 & 30.7 x 8.7	1370 x 380 53.9 x 15	8 x M48
500 530	20 21	\$94	622 24.488	102 4.0	1340 52.8	1270 & 940 x 242 50 & 37 x 9.5	1600 x 406 63 x 16	8 x M56
560	22	\$94	622 24.488	102 4.0	1340 52.8	1270 & 940 x 242 50 & 37 x 9.5	1600 x 406 63 x 16	8 x M56
580 600	23 24	\$95	622 24.488	102 4.0	1340 52.8	1270 & 940 x 242 50 & 37 x 9.5	1600 x 406 63 x 16	8 x M56

Flange Units


When faced with flat horizontal or vertical faces, flange units offer a simple mounting solution. As with Pillow block supports, Flange units are produced with spherical location to accommodate standard bearing housings and provide easy initial alignment of shaft and equipment.

To facilitate positive location of the flange to the surface, the rear face is recessed (dimensions N & V). This allows for a spigot (Tolerance f8) to be located into the flange.

Bearing inspection is simply a matter of removing the top half of the flange and housing. Bearing replacement may also be achieved in the same manner if required. When integrating flange units into new applications, it should be noted that a maximum radial load equivalent to $0.26C_{or}$ is permissible. A maximum axial load of $0.25C_{a}$ must also be taken into account for applications with thrust loading. Units for vertically oriented shafts may also need special consideration given to sealing arrangements.

As always, SRB Technical Services will be happy to advise on any application issues.

Flange Units											
Sha mm	ft (d) inch	Flange Reference	т	Bolts	R	Р	н	Ν	V	L	
125 130	4 ¹⁵ / ₁₆ 5	F56	530 20.9	4 x M24	460 18.1	34 1.3	122 4.8	390.45 15.372	7 0.3	233 9.2	
150 155	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	F58	648 25.5	4 x M24	574 22.6	44 1.7	137 5.4	495.35 19.502	7 0.3	264 10.4	
175 180	6 ³ / ₄ 6 ¹⁵ / ₁₆ 7	F60	724 28.5	4 x M24	638 25.1	44 1.7	156 6.1	546.15 21.502	8 0.3	298 11.7	
240 250 260	9 ¹ / ₂ 9 ³ / ₄ 10	F63	890 35.0	4 x M24	796 31.3	48 1.9	181 7.1	692.20 27.252	8 0.3	348 13.7	

For Bearings and Housings see pages 65 – 68

Triple Labyrinth Housing and Seal References

Light Series									
Sha	ft (d)	Triple Lal Seal Refe	oyrinth erence	Housing Reference					
mm	inch	mm	inch	Retained Expansion					
35 40	1 ³ /16 1 ¹ /4 1 ⁷ /16 1 ¹ /2	35MMATL 40MMATL	103ATL 104 ATL 107ATL 108ATL	LS1HRTL LS1HXTL					
45 50	1 ¹¹ /16 1 ³ /4 1 ¹⁵ /16 2	45MMATL 50MMATL	111ATL 112ATL 115ATL 200ATL	LS2HRTL LS2HXTL					
55 60 65	$2^{3}/_{16}$ $2^{1}/_{4}$ $2^{7}/_{16}$ $2^{1}/_{2}$	55MMATL 60MMATL 65MMATL	203ATL 204ATL 207ATL 208ATL	LS3HRTL LS3HXTL					
70 75	$\begin{array}{c} 2^{11}/_{16} \\ 2^{3}/_{4} \\ 2^{15}/_{16} \\ 3 \end{array}$	70MMATL 75MMATL	211ATL 212ATL 215ATL 300ATL	LS4HRTL LS4HXTL					
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	80MMATL 85MMATL 90MMATL	303ATL 304ATL 307ATL 308ATL	LS5HRTL LS5HXTL					
100 105	$3^{11}/_{16}$ $3^{3}/_{4}$ $3^{15}/_{16}$ 4	100MMATL 105MMATL	311ATL 312ATL 315ATL 400ATL	LS6HRTL LS6HXTL					
110 115	$4^{3}/_{16}$ $4^{1}/_{4}$ $4^{7}/_{16}$ $4^{1}/_{2}$	110MMATL 115MMATL	403ATL 404ATL 407ATL 408ATL	LS7HRTL LS7HXTL					
120 125 130	$\begin{array}{c} 4^{11}/_{16} \\ 4^{3}/_{4} \\ 4^{15}/_{16} \\ 5 \end{array}$	120MMATL 125MMATL 130MMATL	411ATL 412ATL 415ATL 500ATL	LS8HRTL LS8HXTL					
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	135MMATL 140MMATL	503ATL 504ATL 507ATL 508ATL	LS9HRTL LS9HXTL					
150 155	$5^{11}/_{16} \\ 5^{3}/_{4} \\ 5^{15}/_{16} \\ 6$	150MMATL 155MMATL	511ATL 512ATL 515ATL 600ATL	LS10HRTL LS10HXTL					
160	6 ⁷ / ₁₆ 6 ¹ / ₂	160MMATL	607ATL 608ATL	LS11HRTL LS11HXTL					
170 175 180	$6^{11}/_{16}$ $6^{3}/_{4}$ $6^{15}/_{16}$ 7	170MMATL 175MMATL 180MMATL	611ATL 612ATL 615ATL 700ATL	LS12HRTL LS12HXTL					
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	190MMATL 200MMATL	704ATL 708ATL 715ATL 800ATL	LS13HRTL LS13HXTL					
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	220MMATL 230MMATL	808ATL 814ATL 900ATL	LS14HRTL LS14HXTL					
240 250	9 ¹ / ₂ 9 ³ / ₄ 10	240MMATL 250MMATL	908ATL 912ATL 1000ATL	LS15HRTL LS15HXTL					
260 270 280	10 ¹ / ₂ 10 ³ / ₄ 11	260MMATL 270MMATL 280MMATL	1008ATL 1012ATL 1100ATL	LS16HRTL LS16HXTL					
300 305	11 ¹ / ₂ 12	300MMATL 305MMATL	1108ATL 1200ATL	LS17HRTL LS17HXTL					

	Medium Series										
Shat	ft (d)	Triple Lal Seal Refe	oyrinth erence	Housing Reference							
mm	inch	mm	inch	Retained Expansion							
45 50	1 ¹¹ / ₁₆ 1 ³ / ₄ 1 ¹⁵ / ₁₆ 2	45MMATL 50MMATL	111ATL 112ATL 115ATL 200ATL	MS3HRTL MS3HXTL							
55 60 65	$2^{3}/_{16}$ $2^{1}/_{4}$ $2^{7}/_{16}$ $2^{1}/_{2}$	55MMATL 60MMATL 65MMATL	203ATL 204ATL 207ATL 208ATL	MS4HRTL MS4HXTL							
70 75	$\begin{array}{c} 2^{11}/_{16} \\ 2^{3}/_{4} \\ 2^{15}/_{16} \\ 3 \end{array}$	70MMATL 75MMATL	211ATL 212ATL 215ATL 300ATL	MS5HRTL MS5HXTL							
80 85 90	3 ³ / ₁₆ 3 ¹ / ₄ 3 ⁷ / ₁₆ 3 ¹ / ₂	80MMATL 85MMATL 90MMATL	303ATL 304ATL 307ATL 308ATL	MS6HRTL MS6HXTL							
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	100MMATL 105MMATL	311ATL 312ATL 315ATL 400ATL	MS7HRTL MS7HXTL							
110 115	$\begin{array}{c} 4^{3}/_{16} \\ 4^{1}/_{4} \\ 4^{7}/_{16} \\ 4^{1}/_{2} \end{array}$	110MMATL 115MMATL	403ATL 404ATL 407ATL 408ATL	MS8HRTL MS8HXTL							
120 125 130	$\begin{array}{c} 4^{11}/_{16} \\ 4^{3}/_{4} \\ 4^{15}/_{16} \\ 5 \end{array}$	120MMATL 125MMATL 130MMATL	411ATL 412ATL 415ATL 500ATL	MS10HRTL MS10HXTL							
135 140	5 ³ / ₁₆ 5 ¹ / ₄ 5 ⁷ / ₁₆ 5 ¹ / ₂	135MMATL 140MMATL	503ATL 504ATL 507ATL 508ATL	MS30HRTL MS30HXTL							
150 155	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	150MMATL 155MMATL	511ATL 512ATL 515ATL 600ATL	MS31HRTL MS31HXTL							
160 170	$6^{7}/_{16}$ $6^{1}/_{2}$ $6^{11}/_{16}$ $6^{3}/_{4}$	160MMATL 170MMATL	607ATL 608ATL 611ATL 612ATL	MS32HRTL MS32HXTL							
175 180	6 ¹⁵ / ₁₆ 7	175MMATL 180MMATL	615ATL 700ATL	MS33HRTL MS33HXTL							
190 200	7 ¹ / ₄ 7 ¹ / ₂ 7 ¹⁵ / ₁₆ 8	190MMATL 200MMATL	704ATL 708ATL 715ATL 800ATL	MS34HRTL MS34HXTL							
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	220MMATL 230MMATL	808ATL 814ATL 900ATL	MS35HRTL MS35HXTL							
240 260	9 ¹ / ₂ 9 ³ / ₄ 10	240MMATL 260MMATL	908ATL 912ATL 1000ATL	MS36HRTL MS36HXTL							
270 280	10 ¹ / ₂ 10 ³ / ₄ 11	270MMATL 280MMATL	1008ATL 1012ATL 1100ATL	MS37HRTL MS37HXTL							
300 305	11 ¹ / ₂ 12	300MMATL 305MMATL	1108ATL 1200ATL	MS38HRTL MS38HXTL							

Heavy Series									
Sha	ft (d)	Triple Lal Seal Refe	oyrinth erence	Housing Reference					
mm	inch	mm	inch	Retained Expansion					
	_								
100 105	3 ¹¹ / ₁₆ 3 ³ / ₄ 3 ¹⁵ / ₁₆ 4	100MMATL 105MMATL	311ATL 312ATL 315ATL 400ATL	HS6HRTL HS6HXTL					
110 115 120	$4^{3}/_{16}$ $4^{1}/_{4}$ $4^{7}/_{16}$ $4^{1}/_{2}$	110MMATL 115MMATL 120MMATL	403ATL 404ATL 407ATL 408ATL	HS7HRTL HS7HXTL					
125 130	4 ¹¹ / ₁₆ 4 ³ / ₄ 4 ¹⁵ / ₁₆ 5	125MMATL 130MMATL	411ATL 412ATL 415ATL 500ATL	HS8HRTL HS8HXTL					
135 140	$5^{3}/_{16}$ $5^{1}/_{4}$ $5^{7}/_{16}$ $5^{1}/_{2}$	135MMATL 140MMATL	503ATL 504ATL 507ATL 508ATL	HS9HRTL HS9HXTL					
150 155	5 ¹¹ / ₁₆ 5 ³ / ₄ 5 ¹⁵ / ₁₆ 6	150MMATL 155MMATL	511ATL 512ATL 515ATL 600ATL	HS10HRTL HS10HXTL					
160 170	$6^{7}/_{16}$ $6^{1}/_{2}$ $6^{11}/_{16}$ $6^{3}/_{4}$	160MMATL 170MMATL	607ATL 608ATL 611ATL 612ATL	HS11HRTL HS11HXTL					
175 180	6 ¹⁵ / ₁₆ 7	175MMATL 180MMATL	615ATL 700ATL	HS12HRTL HS12HXTL					
190 200	7 ¹ /4 7 ¹ /2 7 ¹⁵ /16 8	190MMATL 200MMATL	704ATL 708ATL 715ATL 800ATL	HS13HRTL HS13HXTL					
220 230	8 ¹ / ₂ 8 ⁷ / ₈ 9	220MMATL 230MMATL	808ATL 814ATL 900ATL	HS14HRTL HS14HXTL					
240 260	9 ¹ / ₂ 9 ³ / ₄ 10	240MMATL 260MMATL	908ATL 912ATL 1000ATL	HS15HRTL HS15HXTL					
270 280	10 ¹ / ₂ 10 ³ / ₄ 11	270MMATL 280MMATL	1008ATL 1012ATL 1100ATL	HS16HRTL HS16HXTL					
300 305	11 ¹ / ₂ 12	300MMATL 305MMATL	1108ATL 1200ATL	HS17HRTL HS17HXTL					

The most popular sealing solution for split roller bearings after the standard felt seal is the Triple Labyrinth. This none contacting seal offers resistance to contaminant ingress at speeds greater than can be accommodated by other seal types (see page 25).

Specialised Bearings

Over the past 10 years, SRB have built a reputation throughout the world for the manufacture of highly specialised bearing units. From thin section, high speed bearings for wire stranding machines to robust, dependable water cooled units for continuous casting, SRB have the capability to provide products at least equal to, and usually far in excess of, the performance of bearings of other manufacture.

The cornerstone of this growing reputation is SRB's willingness to work closely with equipment manufacturers and end users to solve specific application problems. This has led to the development of a number of innovative designs, some of which have now been incorporated into the SRB product range.

With a grinding capacity in excess of 1.4m and turning capacity greater than 1.8m, SRB have ability to produce bearings substantially larger than those listed in the main body of this or other catalogues. With a number of bearings of bore sizes in excess of 700mm in service, SRB have repeatedly demonstrated their ability in this sector.

Continuous casting plant found throughout the steel industry provides one of the most challenging operating environments for any bearing system. SRB, by working in conjunction with a number of OEMs and end-users have established a growing reputation in this field. SRB have introduced a number of design innovations whilst

maintaining the envelope, layout and fitting conditions stipulated by current applications. As a result, a bearing operation life in excess of one million tons of cast steel is not uncommon.

Manufacture of SRB's highly specialised bearing units.

Replacement SRB Split Bearing keeps the Roof on at Ibstock Brick

SRB's recently launched range of interchangeable Split Plummer Block mounted bearings has emphatically proved the value of the new designs by ensuring that one of the two central brick production lines at Ibstock Brick was kept in operation cost effectively. Using the split design as a direct replacement for a failed conventional interference fit SN housed bearing, SRB demonstrated a huge saving in terms of time and cost of replacement.

Engineers took just three hours to complete the replacement whereas the alternative of replacing the original like-for-like would have taken 3–4 working days and required a crane to remove part of the factory roof. In all, the cost would have been approaching £10,000 and required far more logistical planning. As it was, the repair work took just three hours and cost a little over £2,000 fitted, including a James Walker split seal to help prevent liquid contaminants entering the bearing enclosure and causing future failures.

The failed bearing supported one of the main power transmission shafts in one of the two central brick production lines at Ibstock. Until recently, there were only two choices open to maintenance engineers faced with this situation; the first would be to fit another standard bearing and the second to adapt the mounting and shaft positions to accommodate a traditional split roller bearing.

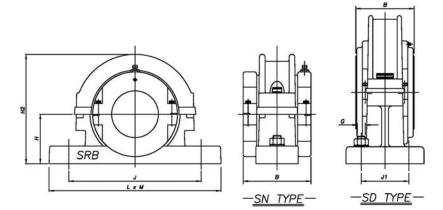
The first option would have required the complete dismantling of a large part of the plant with all the incumbent costs. To fit the second option – a traditional split roller bearing, would also have required a significant amount of work to alter or replace the main support beam in order to accommodate the larger housing dimensions normally associated with a split bearing design. The new 'compact' SRB split plummer block bearing however, is the first split cylindrical roller bearing assembly to be dimensionally interchangeable with standard SN and SD series plummer blocks and therefore could be installed without the major drawbacks associated with the other two options.

Simple inspection is another key advantage of the SRB design. With a solid bearing, specialised vibration analysis maybe required to detect bearing wear. Many are replaced routinely rather than risk downtime due to failure; the top sections of an SRB unit, however, can be simply unbolted and lifted off to provide a rapid visual inspection. Again, this feature can save time and reduce the risk of unplanned or pressurised downtime.

SRB bearings can also compensate for a higher degree of shaft misalignment. Self-aligning ball and spherical roller bearings allow misalignment of the shaft relative to the seal, which results in inefficient sealing performance. The SRB bearing is enclosed by a housing that can swivel within the cast iron support allowing the bearing and seals to remain concentric to the shaft. This feature prevents the characteristic shaft wear and seal damage caused by standard bearings compensating for misalignment within the bearing.

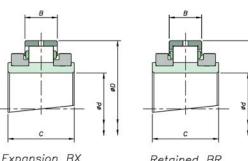
SN/SD Bearings

The New compact Split Plummer Block Bearing from SRB is the first split cylindrical roller bearing assembly to be interchangeable with standard SN and SD series plummer blocks, bringing the benefits of a split design to a much wider audience.


Split roller bearings offer dramatically reduced downtime in maintenance and replacement situations, but could not previously be used in many bearing applications because of their dimensional incompatibility with standard plummer block sizes.

Cast iron plummer blocks accommodating adaptor sleeve mounted spherical roller bearings are amongst the most common types in use, supporting rotating shafts in everything from conveyors and fans to line shafts. Yet their replacement is often time consuming and difficult due to the removal of adjacent equipment. Replacing a typical bearing mounted in a cast iron plummer block can take anything from 6 hours to several days, in contrast, it can take as little as 1–2 hours to replace an SRB bearing unit. Key benefits of the Split Plummer Block are:

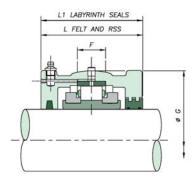
- SRB SN & SD Series supports dimensionally interchangeable with the SN5.. and SD31.. range of plummer blocks.
- Significant reductions in the time required to change trapped bearings.
- Savings in downtime, improved machine availability.
- Simplified mounting procedures, no feeler gauges.
- Improved sealing efficiency, seals remain concentric to the shaft, unlike spherical roller bearings.
- Efficient use of Maintenance Engineering resources.
- Improved reliability, able to accommodate thermal expansion of the shaft within the bearing envelope.



SN/SD Range

	SN SD											
Shaft (d) mm	SRB Reference	SN/SD Reference	н	Hı	H2	J x K	L x M	G				
35 40	SN01	SN 508 SN 509	60	135	84	170	205 x 60	12				
50	SN02	SN 511	70	155	96	210	255 x 70	16				
60	SN03	SN 513	80	180	102	234	275 x 70	16				
65	SN03A	SN 515	80	180	102	234	280 x 70	16				
70 75	SN04	SN 516 SN 517	95	208	112	260	315 x 90	20				
80	SN05	SN 518	100	230	134	290	345 x 100	20				
85	SN05A	SN 519	112	242	134	290	345 x 100	20				
90	SN05B	SN 520	112	242	134	320	380 x 110	24				
100	SN06	SN 522	125	265	132	350	410 x 120	24				
110	SN07	SN 524	140	300	140	350	410 x 120	24				
115	SN07A	SN 526	150	310	140	380	445 x 130	24				
125	SN08	SN 528	150	354	154	420	500 x 150	30				
135	SN09	SN 530	160	369	166	450	530 x 160	30				
140	SN09A	SN 532	170	379	166	470	550 x 160	30				
150	SD10	SD 3134	170	379	172	430 x 100	510 x 180	24				
160	SD11	SD 3136	180	396	172	450 x 110	530 x 190	24				
170	SD12	SD 3138	190	417	172	480 x 120	560 x 210	24				
180	SD12A	SD 3140	210	437	172	510 x 130	610 x 230	30				
200	SD13	SD 3144	220	457	172	540 x 140	640 x 240	30				
220	SD14	SD 3148	240	510	176	600 x 150	700 x 260	30				
240	SD15	SD 3152	260	545	188	650 x 160	770 x 280	36				
260	SD16	SD 3156	280	589	204	670 x 160	790 x 280	36				
280	SD16A	SD 3160	300	609	204	710 x 190	830 x 310	36				
300	SD17	SD3164	320	662	216	750 x 200	880 x 330	36				

Bearings & Housings


00

LSM240

LSM260

LSM280

LSM300

		l	Expansio	on BX		Retaine	d BR	
Shaft	(d) Reference			Bear	ings Ra	tings		
mm	Add BR for retained Add BX for expansion e.g. LSM35BR	Dynamic Cr (kN/lb)	Static C₀r (kN/lb)	Axial C₃ (kN/lb)	Max RPM	D	В	c
35 40	LSM35 LSM40	65 14613	68 15287	3.20 719.38	5400	84.14 3.313	23.80 0.937	55.00 2.165
50	LSM50	83 18659	87 19558	3.60 809.30	4630	98.42 3.875	25.40 1.000	60.00 2.362
60 65	LSM60 LSM65	103 23155	115 25853	5.40 1213.95	3940	114.30 4.500	27.00 1.063	60.00 2.362
70 75	LSM70 LSM75	138 31024	161 36194	7.60 1708.53	3310	133.35 5.250	31.80 1.252	65.00 2.559
80 85 90	LSM80 LSM85 LSM90	187 42039	231 51931	12.40 2787.59	2790	152.40 6.000	38.90 1.531	75.00 2.953
100	LSM100	288 64745	366 82280	16.00 3596.90	2340	174.62 6.875	45.30 1.783	85.00 3.346
110 115	LSM110 LSM115	316 71040	427 95993	18.60 4181.39	1970	203.20 8.000	46.90 1.846	90.00 3.543
125	LSM125	363 81606	496 111505	22.20 4990.69	1740	222.25 8.750	54.00 2.126	95.00 3.740
135 140	LSM135 LSM140	422 94869	585 131513	25.80 5799.99	1570	241.30 9.500	55.60 2.189	98.40 3.874
150	LSM150	459 103187	664 149273	29.40 6609.30	1450	254.00 10.000	55.60 2.189	98.40 3.874
160	LSM160	583 131064	792 178049	33.00 7419	1320	273.05 10.750	60.30 2.374	109.00 4.291
170 180	LSM170 LSM180	524 117800	828 186142	36.40 8183	1220	285.75 11.250	55.50 2.185	109.00 4.291
200	LSM200	614 138033	990 222561	41.00 9217	1070	311.15 12.250	60.30 2.374	106.00 4.173
220	LSM220	659 148149	1062 238747	49.00 11016	930	342.90 13.500	63.50 2.500	115.00 4.528
240	LSM240	696 156467	1182 265724	57.80 12994	820	374.65 14.750	66.70 2.626	122.00 4.803
260 280	LSM260 LSM280	794 178498	1376 309337	66.80 15017	730	406.40 16.000	69.00 2.717	128.00 5.039
300	LSM300	929	1665	78.20	650	438.15	74.60	143.00

650

17.250

2.937

5.630

LSM300

208848

374307

17580

300

Add HR for retained Add HX for expansion e.g. LSM35HR	G	F	L	Lı
LSM35	100.00	25	84	86
LSM40	3.937	1.0	3.3	3.4
LSM50	117.48	25	96	98
	4.625	1.0	3.8	3.9
LSM60	134.94	32	102	104
LSM65	5.313	1.3	4.0	4.1
LSM70	157.16	38	112	114
LSM75	6.187	1.5	4.4	4.5
LSM80	177.00	50	124	126
LSM85	177.80 7.000	2.0	134 5.3	136 5.4
LSM90	7.000	2.0		
LSM100	203.20	50	132	134
LSIVITOO	8.000	2.0	5.2	5.3
LSM110	231.78	64	140	142
LSM115	9.125	2.5	5.5	5.6
LSM125	266.70	76	154	156
LSIVITZS	10.500	3.0	6.1	6.1
LSM135	279.40	76	166	168
LSM140	11.000	3.0	6.5	6.6
LSM150	295.28	82	172	174
LSIVITSU	11.625	3.2	6.8	6.9
	311.15	76	172	192
LSM160	12.250	3.0	6.8	7.6
LSM170	323.85	70	172	200
LSM180	12.750	2.8	6.8	7.9
	358.78	86	172	200
LSM200	14.125	3.4	6.8	7.9
	387.35	82	178	216
LSM220	15 250	3.2	7.0	8.5

15.250

419.10

16.500

454.00

17.874

489.00

19.252

3.2

90

3.5

95

3.7

98

3.9

Housing Reference

7.0

188

7.4

204

8.0

216

8.5

8.5

222

8.7

232

9.1

248

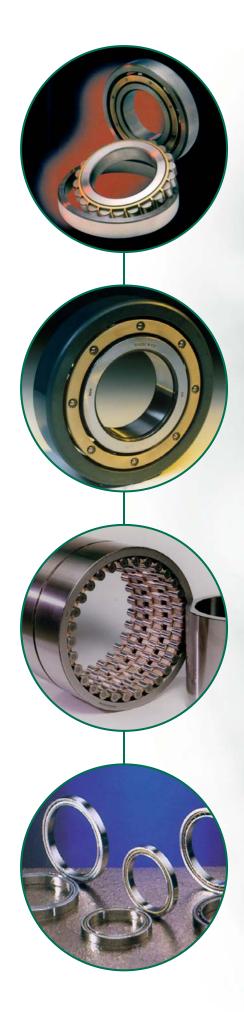
9.8

RPP is a sister division to SRB and manufacture specialist bearings for all industries.

Bearing Types

Cylindrical Roller Bearings (Single and Multi Track) Deep Groove Ball Bearings (Single and Multi Track) Angular Contact Bearings (Single and Multi Track) Four Point Duplex Bearings Thrust Bearings (Ball and Roller)

Production Capabilities


Diameter Range - 15mm bore to 1400mm OD

Material Types

Races	Carbon Chrome Steel - AISI 52100, AMS6444
	Stainless Steel - AISI 440C
	Tool Steel - AISI M50, BG42
	Case Hardening Steels

- Cages Brass Bronze Steel Aluminium P.E.E.K. Rolling Carbon Chrome
- RollingCarbon Chrome AISI 52100ElementsStainless Steel AISI 440CTool Steel AISI M50Silicon Nitride

Innovation in Supply

The SRB product range and all support services are available through a selected worldwide network of Authorised Distributors.

Selected as the best in their area, SRB Authorised Distributors are technically competent to support all our customers in application engineering, supply, installation and life maintenance of split roller bearings. They have the full support and backing of SRB including a complete design and manufacturing service for special and bespoke applications.

SRB, along with our sister companies RPP and RF1, specialise in bearing solutions and are committed to providing a service that contributes to the optimisation of your plant efficiency.

Our approach of working closely with customers allows us to continuously refine and improve our products, production processes and service procedures.

We Listen, You Benefit.

e-mail : collvilaro@collvilaro.com • www.collvilaro.com