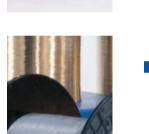
Uhing Linear Drives®

0


0

0

Π


21

...made by

07 e

11/2006

STATEWIDE LINEAR BEARINGS

1

T

l

Rolling Ring Drives

Uhing-Products

Rolling Ring Drives: Catalog RG/RGK/KI

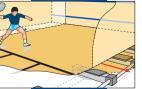
Non Contact Flange Detecting System: Catalog FA

Guide System: Catalog GS

> Electronic Winding System: Manual EWS

Timing Belt Drive: Catalog AZ

Fast Action Clamping System easylock[®]: Catalog UE


Smooth Shaft Fastener

U-Clip: Catalog UE

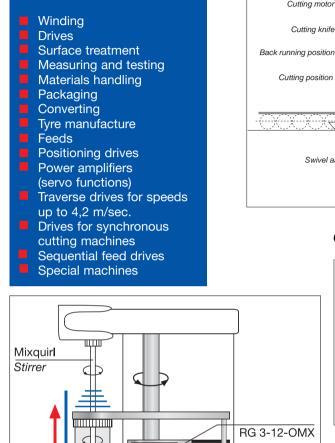
Engineering: Catalog EG

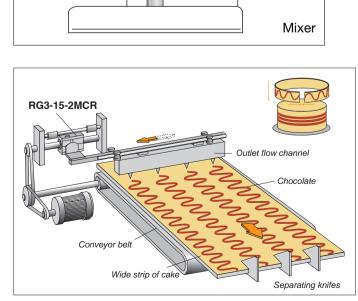
Joachim Uhing KG GmbH & Co - the originator of the Rolling Ring Principle - successful for over 50 years.

More about us at: www.uhing.com

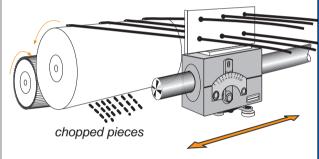
Our worldwide network of agencies guarantees a reliable service on the spot.

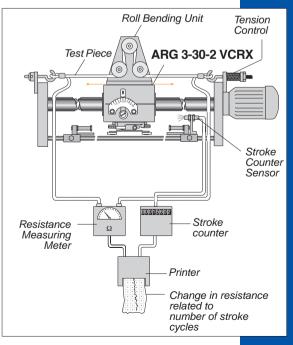
Dogo


Summary of contents


	Page
Uhing-Products	2
Applicational areas	3 - 5
The Uhing Rolling Ring Principle	6
Dimensions and technical details	
Types KI, AKI	7
Types RGK	8 - 9
RGK3-15-0 / ARGK3-15-0 (deliverable from January 2007) RGK3-20-0 / ARGK3-20-0	
Types RG	10 - 17
RG3-15-2 / ARG3-15-2 RG4-15-2 / ARG4-15-2 RG3-20-2 / ARG3-20-2 RG4-20-2 / ARG4-20-2 RG3-22-2 / ARG3-22-2 RG4-22-2 / ARG4-22-2	10 - 13
RG3-30-2 / ARG3-30-2 RG4-30-2 / ARG4-30-2 RG3-40-2 / ARG3-40-2 RG4-40-2 / ARG4-40-2	14 - 15
RG3-50-0 / ARG3-50-0 RG4-50-0 / ARG4-50-0 RG3-60-0 / ARG3-60-0 RG4-60-0 / ARG4-60-0 RG3-80-0 / ARG3-80-0 RG4-80-0 / ARG4-80-0	16 - 17
Exploded view of a Rolling Ring Drive Unit	18
Product survey and ordering information	19
Selection	20 - 22
Features	23 - 25
Operational guide	26 - 27
Uhing Agents	ww.uhing.com

Applicational areas



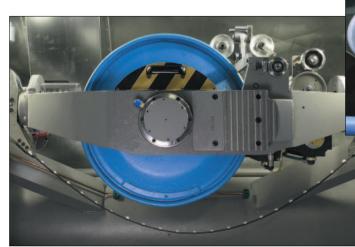


Umschaltung Reversal

Cutter carriage Cutting motor Cutting knife Back running position Cutting positi

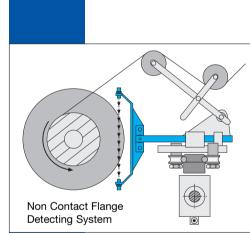
Glass fibre chopping machine

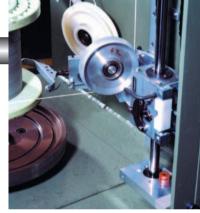
Continuous cable flex-testing equipment



Production of tarts

Rührbehälter


Impeller type mixer

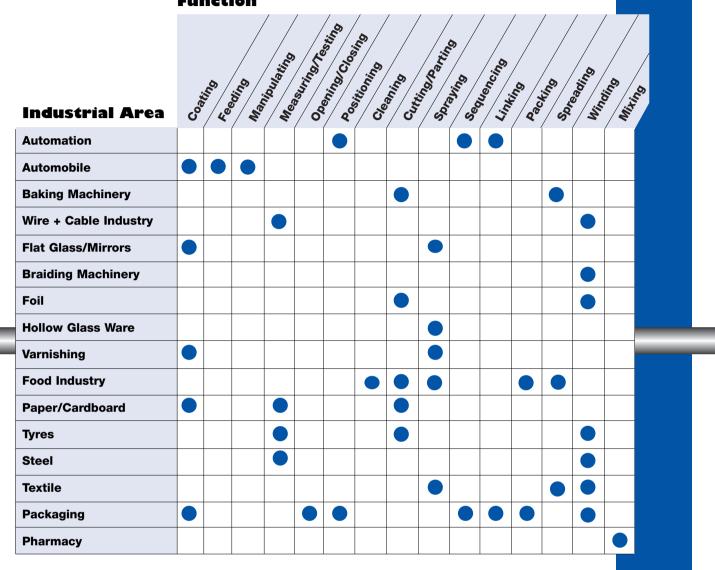


Buncher

Winding techniques

Non-contact flange detecting system with light barrier FA

f

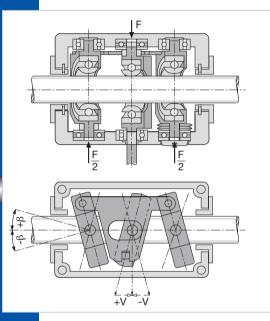


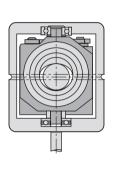
STATEWIDE LINEAR BEARINGS

4

Operational area

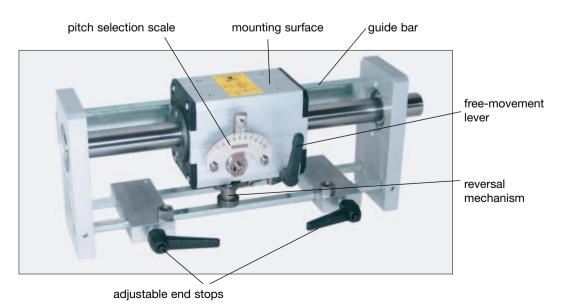
Function





The Uhing Rolling Ring Principle

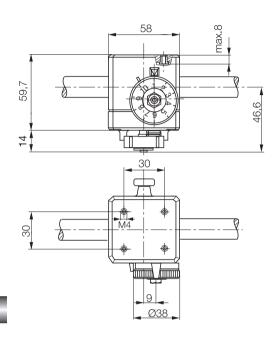
Rolling Ring Drives are friction drives which convert the constant rotation of a plain round shaft into reciprocating motion. They operate like nuts on a threaded bar, however the pitch both left-hand and right-hand is capable of fine adjustment or can be set at zero. This effect is achieved by using ball bearing based Rolling Rings which are designed to pivot about the shaft, their specially crowned running surfaces being pressed against the shaft as it rotates.

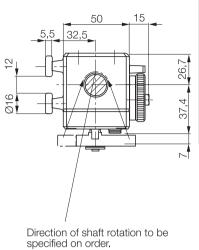


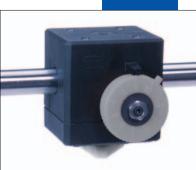
The main advantages of the Uhing Rolling Ring Principle:

- automatic reciprocating motion*
- variable adjustment of traverse speed up to 4,2 m/sec. max., also different for both directions*
- * at constant speed and direction of shaft rotation
- variable adjustment of traverse length
- high dynamics at the reversal points
- free-movement lever
- low operating costs

Example ARG 3-30-2 MCRF

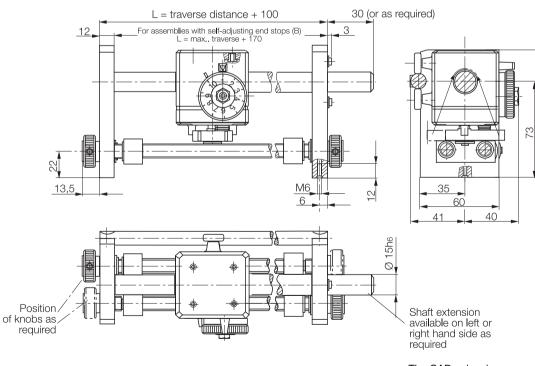



Dimensions and technical details



Uhing Rolling Ring Drive Types KI und AKI

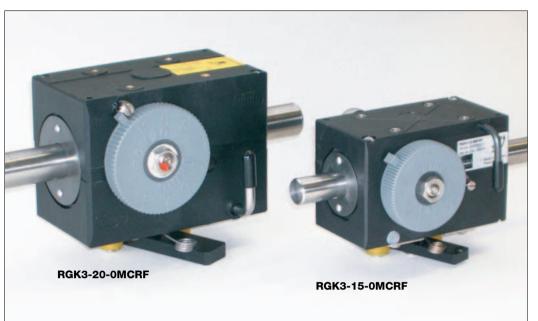
Type KI3-15-6MCR

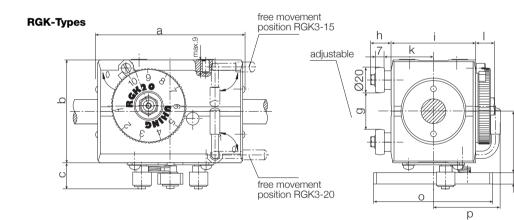


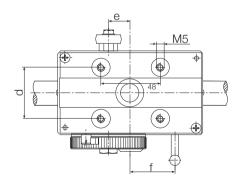
specified on order.

Type AKI3-15-6MCRW

The CAD - drawings are available in the Internet in DXF - format.


Dimensi	ons				
Туре	Weight (kg)	Max. side thrust F _{RG} (N)	Drive torque M₀ (Ncm)	Max. pitch h (mm)	
KI3-15-6 MCR	0,28	30	6±0,5	6,2	



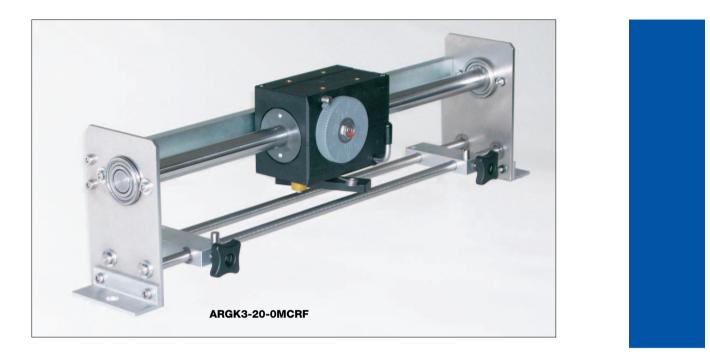

8

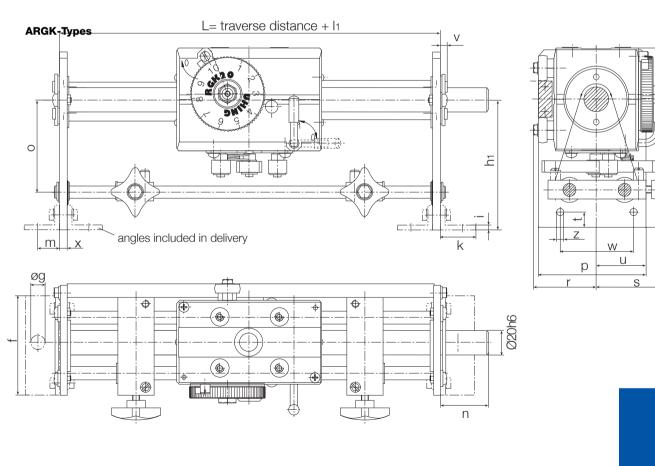
Dimensions and technical details

Uhing-Rolling Ring Drives Types RGK und ARGK

The CAD - drawings are available in the Internet in DXF - format.

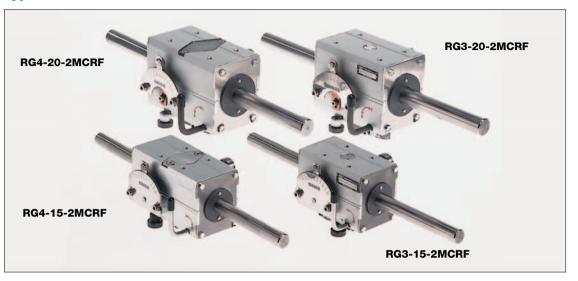
E

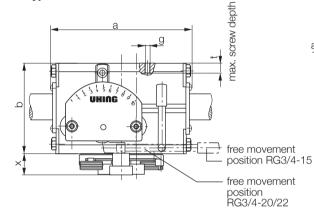

⊆


Dimensions

STATEWIDE LINEAR BEARINGS

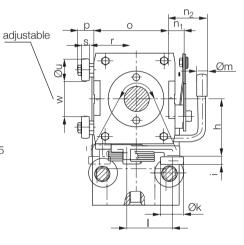
	weight	Side thrust	Drive torque	Max. pitch	Dir	nens	sions	for I	RGK	-Тур	es								
Types	(kg)	Frg (N)	M₀ (Ncm)	h (mm)	а	b	С	d	е	f	g	h	i	k	Ι	m	n	0	р
RGK3-15-0	0,9	110 - 130	2,3	12,2	100	63	17	34	15	30	20	17,3	53	32,8	15,8	40,5	6	90	42,3
RGK3-20-0	0,9	110 - 130	2,3	12,2	120	84	21	42	18	36	32	17,5	68	40,5	15,5	52,5	8	90	54




Addit f	tional d Øg	imensi h1	ons for h2				'	n	0	р	r	S	t	u	V	W	x	Z	L max
60	7	80	117	3	20	150	11	30	57	71	44	44	9	30	4	40	3	Ø 4,4	750
80	11	104	146	4	30	175	18	40	73,5	88	51,5	60,5	12	40	5	60	4	Ø 5,4	850

Dimensions and technical details

Uhing-Rolling Ring Drives Types RG und ARG


RG-Types

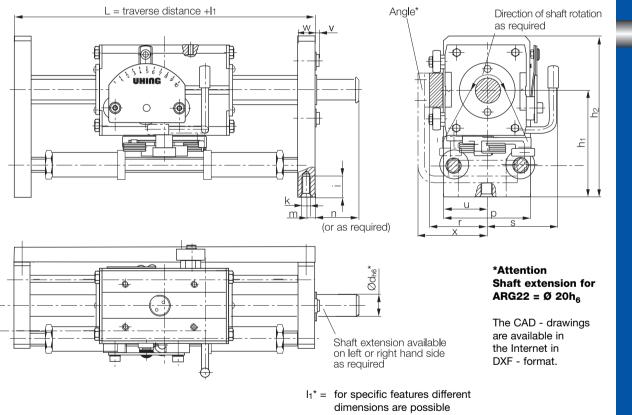
•

æ

¢

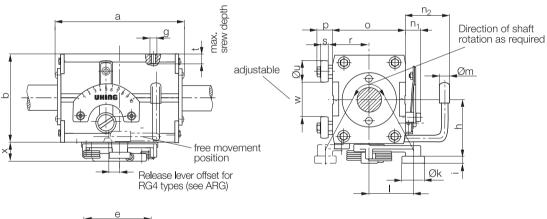
The CAD - drawings are available in the Internet in DXF - format.

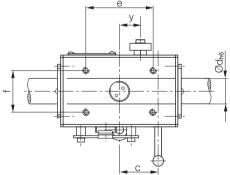
Dimensions


										* F	RG3/4	4-20/2	22 wit	h driv	e "ligl	ht" se	e pag	ie 10/1	11				
	Weight		Dime	ensions	for RG	-Type	s (mm))							<i>"</i> J								
Туре	(kg)	а	b	С	Ød_{h6}	е	f	g	h	i	Øk	I	Øm	n1	n_2	0	р	r	S	t_{max}	Øu	w x	У
RG3-15-2MCRF	0,71	98	63	28,5	15	36	32	M5	41	5,5	16	25	7,4	12,5	24	53	16	32	7	6	20	20 ^{+0.4} 15	19
RG4-15-2MCRF	0,86	115	"	38	33	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	33 33	33
RG3-20-2MCRF *	* 1,33	119	84	37	20	70	40	M6	54	6	19	37	10	16	37,5	68	17,5	40,5	7	9,5	20	32 ±0.4 21	21
RG4-20-2MCRF *	• 1,53	129	"	41,5	**	"	"	"	"	**	"	"	"	33	"	33	"	"	"	"	"	33 33	29
				~ -			- 10					~ 7						10 -	_				
RG3-22-2MCRF *	* 1,33	119	84	37	22	70	40	M6	54	6	19	37	10	16	37,5	68	17,5	40,5	7	9,5	20	$32 \pm 0.4 21$	21
RG4-22-2MCRF *	* 1,53	129	"	41,5	"	33	33	33	33	33	33	"	"	33	33	**	"	"	"	"	33	22 22	29

Ødh6

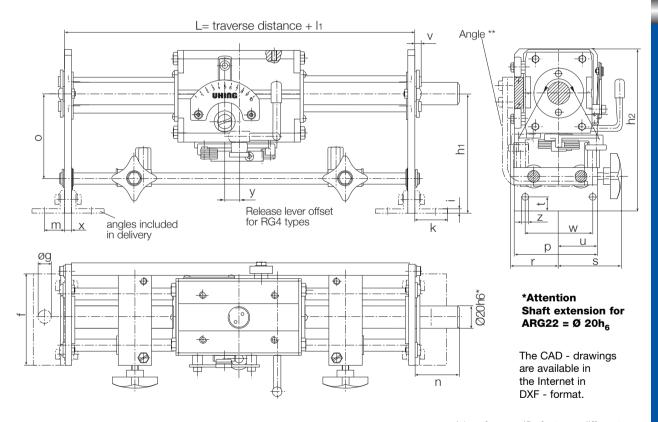
ARG-Types


Addit	ional di	mensio	ons for a	ARG-1	īypes (ı	mm)										Technical	details (se	e page 20)
h₁	h ₂	i	k	I_1^{\star}	m	n	р	r	s	u	V	w	х	У	* Angle for L \geq	F _{RG} (N)	M ₀ (Ncm)	h (mm)
75 "	112 "	20 "	M6 "	150 180	6 "	30 "	60 "	40 "		30 "	3 "	12 "	47 "	÷ 9,5	750 "	110 220	2,5 4,8	11,4 "
104 "	146 "	24 "	M12 "	200 210	10 "	40 "	70 "	48 "	79 "	36 "	5,5 "	20 "	63 "	÷ 11,5	850 "	160 320	2,5 5,1	15,9 15,7
104 "	146 "	24 "	M12 "	200 210	10 "	40 "	70 "	48 "	79 "	36 "	5,5 "	20 "	63 "	÷ 11,5	850 "	160 320	2,5 5,1	17,2 17,0



Uhing-Rolling Ring Drives Types RG und ARG

RG-Types



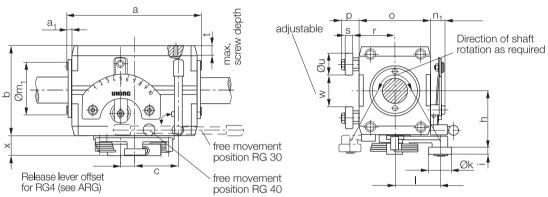
The CAD - drawings are available in the Internet in DXF - format.

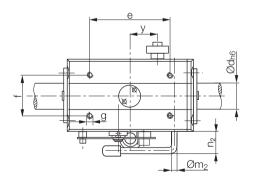
Dimensio	ons																							
	Weight	t	Dime	ensions	for RC	G -Type	s (mm)																
Туре	(kg)	а	b	С	Ødh6	е	f	g	h	i	Øk	Ι	Øm	n1	n ₂	0	р	r	S	t _{max}	Øu	W	х	У
RG3-20-2MCRF RG4-20-2MCRF	1,33 1,53	119 129	84 "	37 41,5	20 "	70 "	40 "	M6 "	54 "	6 "	19 "	37 "	10 "	16 "	37,5 "	68 "	17,5 "	40,5 "	7 "	9,5 "	20 "	32 [±] "	^{±0.4} 21 "	21 29
RG3-22-2MCRF RG4-22-2MCRF	1,33 1,53	119 129	84 "	37 41,5	22 "	70 "	40 "	M6 "	54 "	6 "	19 "	37 "	10 "	16 "	37,5 "	68 "	17,5 "	40,5 "	7 "	9,5 "	20 "	32 [±] "	^{±0.4} 21 "	21 29

ARGL-Types


 $I_1^* = for specific features different dimensions are possible$

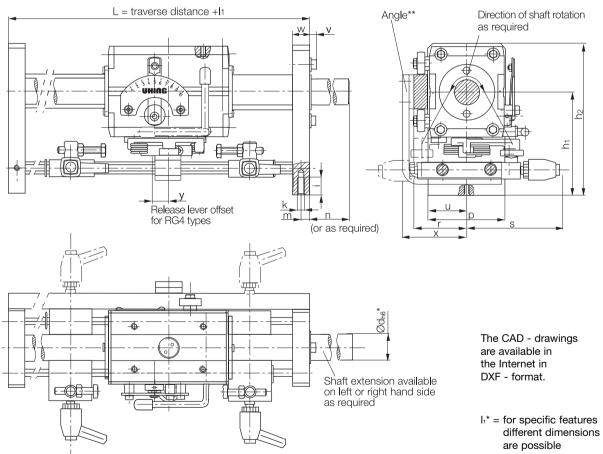
,	Addi	tional	dimens	ions fo	or ARG	L- Typ	es MCI	RF (m	m)												Technica ** Angle	al details	(see page 2	20)
1	:	Øg	h1	h2	i	k	l1*	m	n	0	р	r	S	t	u	V	W	х	у	Z	for $L \ge$	F _{RG} (N)	M ₀ (Ncm)	h (mm)
8	30 "	11 "	104 "	146 "	4	30 "	200 210	18 "	40 "	73,5 "	88 "	51,5 "	60,5 "	12 "	40 "	5 "	60 "	4	11,5 "	ø 5,4	850 "	160 320	2,5 5,1	15,9 15,7
ę	30 "	11 "	104 "	146 "	4	30 "	200 210	18 "	40 "	73,5 "	88 "	51,5 "	60,5 "	12 "	40 "	5 "	60 "	4	11,5 "	ø 5,4	850 "	160 320	2,5 5,1	17,2 17,0


13



Uhing-Rolling Ring Drives Types RG und ARG

RG-Types

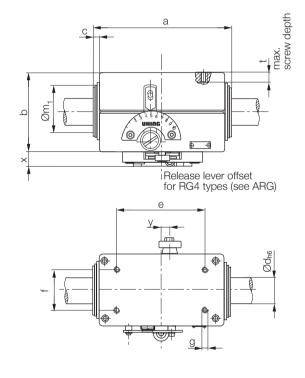

The CAD - drawings are available in the Internet in DXF - format.

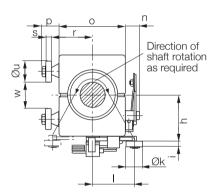
Dimensions

Types RG3-30-2MCRF	Weig (kg) 2,7		a1 5	b	С	s for R Ød _{h6} 30		es (m f 50	im) g M6	h 67,5	i 8	Øk 26	l 52	Øm₁ 64	Øm₂ 8	₂ n₁ 17	n₂ 41,5		14	r 49	s 8	t _{max} 12	Øu 26	w 40 ^{±0,6}	x 23	y 25
RG4-30-2MCRF	3,2	180	33	33	58	33	33	"	33	"	"	33	"	"	"	"	41,5	33	"	33	8	"	33	33	"	40
RG3-40-2MCRF	4,4	182	4	128	51	40	100	68	M10	76	9	32	70	80	10	17	67,5	110	20	61	9	12	32	50 ^{±0,5}	25,5	25
RG4-40-2MCRF	5,3	210	"	33	67	33	"	"	33	"	"	33	"	"	"	17	33	"	"	**	**	33	33	33	33	41

ARG-Types

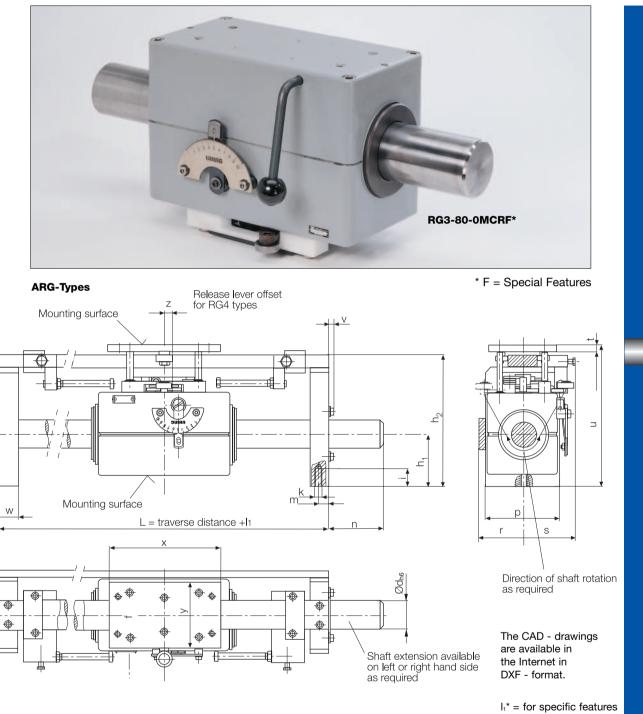
Additi h₁ 120	ional dii h₂ 175	i mensic i 25	k M12		m	n		r 61	s 107	u 45	v 7	w 20	x 75	y ~	** Angle for L ≥ 940	Technical (see page F _{RG} (N) 260/400	20) M₀(Ncm)	h (mm) 26
"	**	33	33	280	33	**	**	"	107	33	33	33	33	15	55	520	12	26
150	220	32	M16	320	15	80	114	77	126	57	6,5	30	104		1100	420	28	33
"	33	"	33	350	"	**	"	"	126	33	"	"	"	16	33	840	50	33




Uhing-Rolling Ring Drives Types RG und ARG

RG-Types

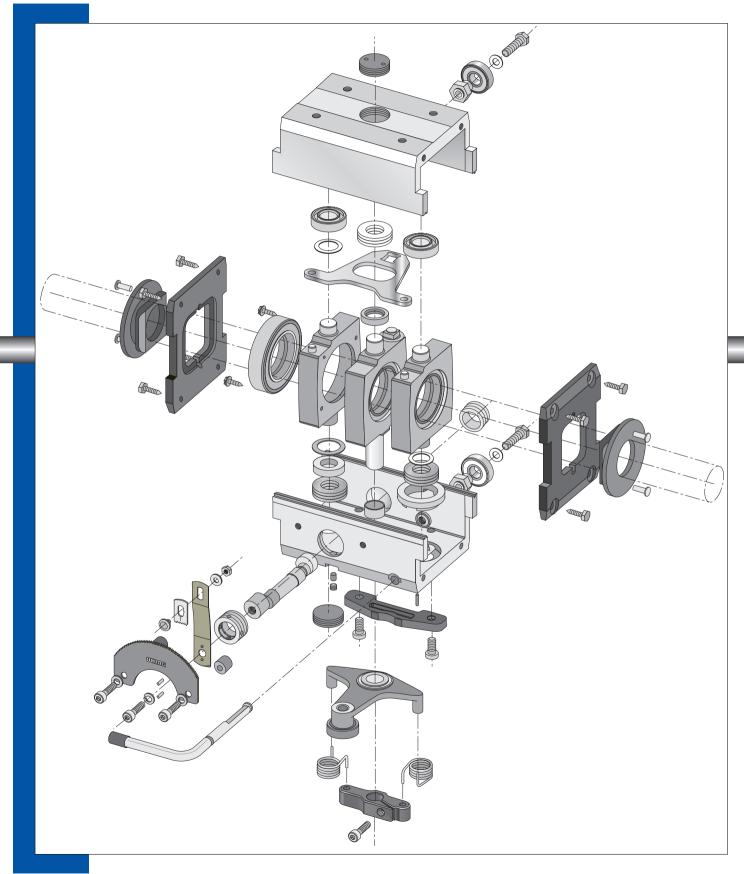
* F = Special Feature



The CAD - drawings are available in the Internet in DXF - format.

Dimensions

	Weight	t	Dime	ensions	for RG	-Type	s (mm))															
Туре	(kg)	а	b	С	$ extsf{Od}_{h6}$	е	f	g	h	i	Øk	1	Øm	n	0	р	r	S	t_{max}	Øu	W	х	У
RG3-50-0MCR	9,8	240	154	6	50	160	90	M12	89,5	9	32	70	96	23	132	35	74	18	15	32	65	25,	5 5
RG4-50-0MCR	11,1	"	**	**	"	**	"	"	**	"	**	"	"	"	"	"	"	"	"	"	"	"	33
RG3-60-0MCR	17,0	297	190	9,5	60	120	80	M12	109	10	35	114	114	26	160	32	83	20	15	35	100	40	51
RG4-60-0MCR	19,6	"	"	"	"	"	"	"	"	33	"	"	"	"	"	"	"	"	"	"	"	"	33
RG3-80-0MCR	27,0	368	236	8,5	80	240	80	M12	132	10	35	114	130	23	188	41	103	20,6	19	52	92	40	./.
RG4-80-0MCR	32,0	**	**	**	"	"	"	99	"	33	"	"	"	**	33	33	33	33	33	"	"	"	"


different dimensions are possible

Additi	onal di	mensio	ons fo	r ARG	-Types	(mm)												Heavy duty steady bar	Technic (see pa	al details ge 20)	
MCR1	h₁	h ₂	i	k	₁ *	m	n	р	r	s	t	u	V	W	х	у	Z	for L	F _{RG} (N)	M₀(Ncm)	h (mm)
12,3	91	235	32	M16	460	16	100	150	95	81	12	256	9	38	190	130	÷	≤ 2000	700	70	41
		250							100 ¹⁾			271						> 2000			
13,6	53	33	**	59	"	59	33	33	**	"	"	33	**	"	33	"	18	33	1400	120	41
19,6	140	330 340	35	M16	580	25	120	170	115	138	15	352 362	8	48	300	180	÷	≤ 3000 > 3000	1000	90	49
22,2	"	"	**	33	**	33	"	"	"	"	"	33	"	**	"	**	22,5	"	2000	150	49
29,6	140	350 380	35	M16	620	25	150	200	130	138	15	375 405	8	48	300	180	÷	≤ 3600 > 3600	1800	300	76
34,6	**	**	"	"	"	33	"	33	**	"	33	33	33	55	33	"	30	"	3600	350	76

Exploded view of a typical Rolling Ring Drive Unit

RG3

Product Survey and Ordering Information

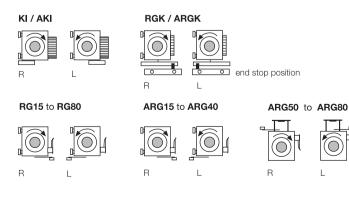
- -- -

Product Survey

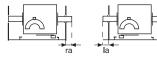
/ey		Uhing Linear Drives®										
Product Group		Rolling Ring Drive									Kinemax	
Type Refe	Type Reference		RG page 10 - 16 RGK p. 8								KI page 7	
		ARG page 11 -17 A							ARGK p.9		AKI page 7	
Style		3 or 4							3		3	
Number of	Number of rolling rings											
Size		15	20	22	30	40	50	60	80	15	20	15
Shaft diameter												
Design Category		2	2	2	2	2	0	0	0	0	0	6
Direction of rotation		L, R							inde-		L, R	
Pitch	L = left	pendent										
	R = right											
Features		see page 23 - 25							s. page 23-25		ige 23-25	
Customer Specific		see page 25 wi								wip	oers	see page 25
Features												
Pitch		11,4	15,9	17,2	26	33	41	49	76	8,5	12,2	6,2
max. (mm)												

Example of Ordering Specification

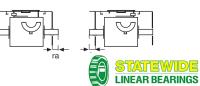
Type Reference	RG,	ARG	, ARC	GL ("lic	ght"-A	ntrieb)	RGK	, ARG	GK, K	I, AK	I
Example	RG	3	-	30	-	2	М	С	R	F	X
Type Reference											
Style											
Seperator Symbol											
Size											
Design Category											
Features											
Customer Specific											
Features *											


* X e.g. Adapter (twist-free coupling), intermediate support bracket, heavy duty steady bar, drive motor, wipers, special paint finish, additional anti-corrosion protection, double bearing support, special pitch, noise dampening, sequence control, etc.

The following is further required:

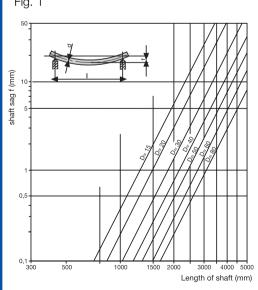

Direction of shaft rotation to the right = R to the left = L

Shaft extension,


- diameter and length (mm)
- ra = extending beyond the <u>righthand</u> bracket when looking at the pitch selection scale
- la = extending beyond the <u>lefthand</u> bracket when looking at the pitch selection scale

for ARG15 to ARG40 and ARGK

for ARG50 to ARG80


Selection

1. Formulae and $F_{Z}(N)$ = additional force e.g. Mo (Ncm) = idling torque related units component of the cutting force of a n(r.p.m.) = shaft speed separator $a(m/sec^2) = acceleration at the$ f(mm) = shaft sag from Fig.1 n_{crit}(r.p.m.) = critical shaft speed reversal point P(kW) = drive power required $g(m/sec^2)$ = acceleration due to d(mm) = shaft diameter gravity (9,81m/sec2) s(mm) = length of reversal = pitch of unit (travel per slowdown cam F(N) = side thrust required h(mm) shaft revolution) = reversal time from F_{RG}(N) = side thrust produced t(sec) h_{max}(mm) = maximum pitch see by Rolling Ring Drive Fig.2 Unit Fig.3 v(m/sec) = max. traverse speed = friction ($F_N \cdot \mu$) required. Should F_B(N) l(mm) = length of shaft beonly relevant when tween centres of always be calculated at maximum unit pitch the associated mass bearing brackets (pitch setting 10 from is mounted on its own independent carriage = total mass to be m(kg) Fig.2) moved, including the C(N) = dynamic loading of F_N(N) = normal force of total **Rolling Ring Drive** Rolling Rings Unit, connections etc. weight of associated mass and carriage Md(Ncm) = drive torque= radial loading of P_R(N) = coefficent of friction **Rolling Rings** μ

2. Preselection

A unit should be preselected by estimating the side thrust required and/or giving consideration to the permissible shaft sag f with reference to Fig. 1

Fig. 1

2.1. Rolling Ring Drive Units with Instantaneous **Reversal (Feature M)**

Only suitable for traverse speeds up to approx. 0.25 m/sec. (Kinemax up to approx. 0.4 m/s; RG40-2 up to 0.6 m/s)

The reversal time t is dependent on the size of the Rolling Ring Unit and the pitch selected via the scale (pitch angle). The reversal action is of the triggered throwover type.

$$\mathsf{F} = 2.5 \, \frac{\mathsf{m} \cdot \mathsf{v}}{\mathsf{t}} + \mathsf{F}_{\mathsf{R}} + \mathsf{F}_{\mathsf{Z}} + 1.25 \, \cdot \, \mathsf{m} \cdot \mathsf{g} + (\mathsf{F}_{\mathsf{k}})^*$$

*see section 6 - Winding Applications

Note:

The value of side trust F calculated must be less than that of the Rolling Ring Drive Unit selected. $F < F_{RG}$

If necessary, select a different size of unit and repeat the process. For winding applications please also refer to section 6.

2.2 Rolling Ring Drive Units with Reversal Slowdown (Feature V)

Suitable for traverse speeds up to approx. 4,2 m/sec.

A reversal with slowdown reduces the forces imposed on the unit at the reversal point.

$$F = 1.25 \cdot m \cdot a + F_R + F_Z + 1.25 \cdot m \cdot g$$

If a maximum rate of acceleration a is specified, the required length s for the delay cam is calculated as follows:

$$s = \frac{v^2 \cdot 10^3}{a}$$

If the delay cam length s is specified, the acceleration a is calculated as follows:

$$a = \frac{v^2 \cdot 10^3}{s}$$

3. Side Thrust

The value of side thrust F calculated must be less than that of the Rolling Ring Drive Unit selected. F < ${\rm F}_{\rm RG}$

If the side thrust available from the unit chosen is too little, either a larger unit or a longer length of delay must be selected.

The thrust provided by the units is virtually constant for shaft speeds above 300 rpm. For slower speeds the thrust increases a little over the specified catalogue values as the speed reduces towards zero.

4. Shaft Speed

4.1. Calculation

 $n = \frac{v \cdot 6 \cdot 10^4}{h_{max}}$

The speed so calculated must not $\frac{5}{2}$ be exceeded.

Recommended speed range: $n_{min} = 10$ rpm.

 $n_{max} = 3000 \text{ rpm}.$

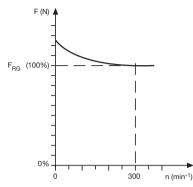
For speeds outside this range, please consult supplier.

The pitch h is obtained by taking the 10 setting value for the pitch selection scale and relating it to the graph for the appropriate unit size. (Fig. 3)

4.2. Critical Shaft Speed

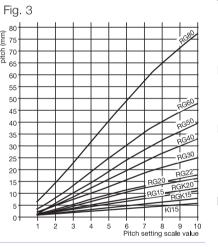
Note:

Depending upon its quality, the shaft can go out of balance at a speed of up to 25 % lower than that specified above.


If it is necessary to go through a critical range in order to reach the operational speed, this can lead to short term shaft vibration. This has no effect on the operation of the drive.

If the operational speed is in the critical speed range, this can be rectified as follows:

1. with a double bearing support at P = one end:


Increase factor approx. 1.5.

For increase of lifetime there should only be adjusted the side thrust which is needed as a result of calculation according to 2.1 and 2.2

Change in side thrust related to shaft speed

Minimum reversal distance: Feature **M** (see Page 19) \approx 1 x d Feature **E**+**N** (see Page 19) = 0

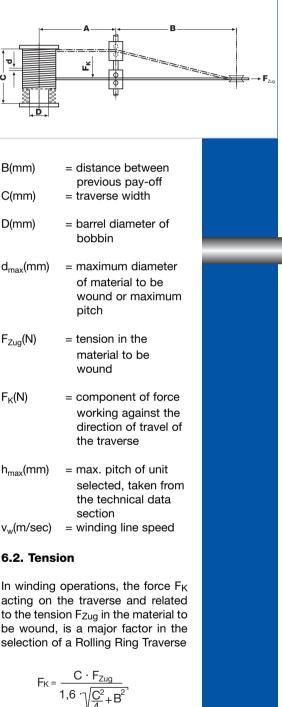
2. with double bearing supports at both ends:

Increase factor approx. 2.2. The distance between the bearing support brackets should be at least 2.5 x the diameter of the shaft.

5. Shaft Drive

5.1. Drive Torque

 $Md = \frac{F_{RG} \cdot h_{max}}{20 \cdot \pi} + Mo$


Value for Mo to be taken from the technical data section.

5.2. Drive Power Requirement

6. Winding Applications

6.1.Formulae and related units

As, almost invariably, traverses with instantaneous reversal are used for winding applications, the value calculated for F_K must be added to the side thrust required figure taken from section 2.1.

_	_

6.3. Calculation of Traverse Speed		Example 1	Example 2
$v = \frac{v_w \cdot d_{max}}{D \cdot \pi \cdot 0,95}$ 6.4. Optimum Ratio between		ARG 3-30-2 VCRF Speed 0,9 m/sec. Standard Thrust F = 260 N	ARG 3-30-2 VCRF Speed 0,9 m/sec. Reduced thrust F = 200 N
Spool Shaft and Traverse Shaft Speeds			
-	1.	$C_1 = 16.800$	$C_1 = 16.800$
$i_{opt} = 0.95 \frac{h_{max}}{d_{max}}$	2.	P _R = 5 · 260 N = 1.300 N	$P_R = 5 \cdot 200 \text{ N} = 1.000 \text{ N}$
i _{opt} > 1 = traverse shaft slower i _{opt} < 1 = traverse shaft faster Formulae see 6.1.	3.	$\frac{C_1}{P_R} = \frac{16.800}{1.300} = 12.92$	$\frac{C_1}{P_{\rm B}} = \frac{16.800}{1.000} = 16.8$
6.5. Please note	4.	$n = \frac{0.9 \cdot 6 \cdot 10^4}{25} = 2.160 \text{ rpm}$	$n = \frac{0.9 \cdot 6 \cdot 10^4}{25} = 2.160 \text{ rpm}$
Pitch settings lower than "1" on the scale should be avoided if the requirement is for a high quality of	5.	$L_{10h} = 16.500$ Hours of operation	L _{10h} = 35.000 Hours of operation
wind. Compensate by changing the ratio between the spool shaft and			

Nomogramm

Calculation of the 7. **Operational life of Uhing Rolling Rings**

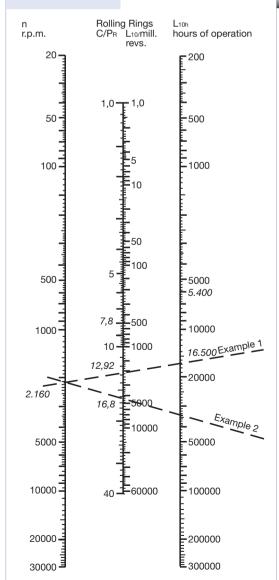
traverse shaft speeds. (Reduce tra-

1. C Determine a value for

verse shaft speed).

Type RG 15/KI 20/22/RGK 30 40 50 60	C ₁ (N) 6 050 11 200 16 800 21 600 29 600 37 700	$\begin{array}{c} C_2(N) \\ 2\ 800 \\ 5\ 600 \\ 9\ 300 \\ 13\ 200 \\ 18\ 300 \\ 24\ 500 \end{array}$
60	37 700	24 500
80	58 800	39 000

- C₁ = Unit operating continuously on rotating shaft without a standstill
- C₂ = Unit operating continuously and including a standstill on a rotating shaft
- 2. Calculate P_R KI, RGK and all RG3-types:
 - $P_R = 5 \cdot F_{RG}^*$

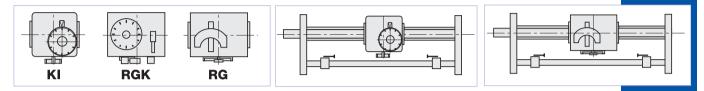

all RG 4-types: $P_R = 2.5 \cdot F_{RG}^*$ *F = <u>calculated</u> value of the side thrust according to 2.1 and 2.2 only if increasing of operational life time of the Rolling Rings is really necessary. In case of order it is an absolute must to mention.

3. Divide C by P_R

4. Calculate the required shaft speed as shown

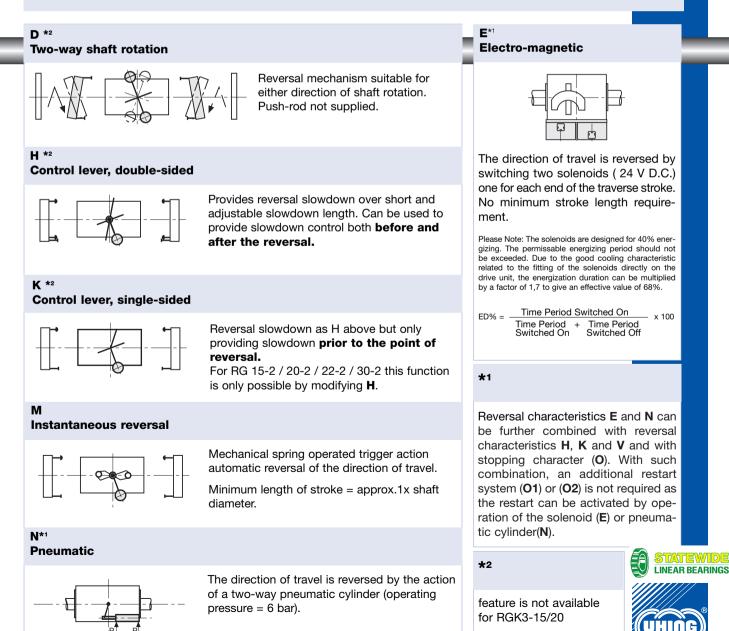
$$n = \frac{v \cdot 6 \cdot 10^4}{h_{max}}$$

5. Determine the operational life in hours from the nomogram



If you wish Joachim Uhing KG GmbH & Co to make a selection for you in respect of your application, please ask for Applications Questionnaire 03e.

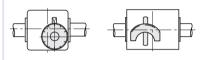
Standard

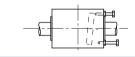

Rolling Ring Drives Types KI, RGK und RG KI 3-15, RGK3-15/20 RG 3/4-15 to RG 3/4-80 Rolling Ring Drives Types AKI, ARGK und ARG/ARGL ("light") Rolling Ring Drive Units KI, RGK and RG with shaft, steady bars, end brackets and end stops

Features

<u>Attention</u>: The dimensions and technical Details on the pages 7 to 17 are only valid for the features MCRF resp. MCR/MCR1. For different features ask for dimensional drawngs.

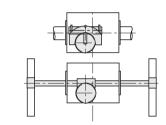
Reversal


V *² Reversal slowdown


Reversal slowdown for slowdown lengths in excess of 15 mm via cam and contact lever system.

Pitch Setting

C Scale


S *² Set scews

Pitch setting via knob (KI/RGK) or the engagement of a lever in a serrated scale (RG). Simultaneous setting of the same pitch in both directions of travel.

Infinetely variable pitch setting separate settings for each direction.


Z *² Worm drive

Simultaneous infinitely variable setting of the same pitch in each direction of travel. Types RG: Supplied without wormwheel drive shaft. If required an operation knob is available (X.) Types ARG: Supplied with worm drive shaft for remote adjustment from either end (to be specified). Also available with adjustment control (X).

Steady Rollers

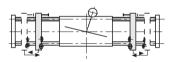
LINEAR BEARINGS

Free-Movement Lever

Mechanical

After operation of the free-movement lever, the unit can be pushed freely along the shaft. Standard with RG3/4-15 to RG3/4-30 and RGK

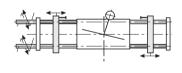
P *2 **Pneumatic**


Side thrust of the unit is achieved pneumatically, free movement (pushing the unit freely along the shaft) by venting the membran cylinder. System also suitable for remote control. Operating pressure = 6 bar

Please note: In vertical applications, before operating the free-movement lever please ensure that the load cannot fall in an uncontrolled manner. Injury can result! Attention: All Rolling Ring Drive Units, especially if fitted with feature F or P are not allowed to be rigid connected to a seperate load carrier. (see page 23, item 5)

Stroke Width Adjustment

B *2


Self-adjusting end stops

For continuously increasing or decreasing the traverse width during the winding operation. Only recommended with units having a free-movement lever (F). Please consult supplier if application is vertical.

W *2

Lead screw operated end stops

Remote lead screw adjustment of the traverse width operated from one of the end bracket positions. Can also be supplied with a handwheel control or with a control motor drive (X).

Stopping on a Rotating Shaft and Restarting

01 *2

O *2

Stopping

The Rolling Ring Drive is brought to a standstill position on the rotating shaft by reducing the pitch to 0. Only available in combination with units having reversal type H. K and V. Restart via O1 or O2.

(For information concerning standstill times, please consult supplier).

Load Carrier

LΖ

Pneumatic restart

Restart activated by a single action pneumatic cylinder (operating pressure = 6 bar) which operate the reversal mechanism.

02 *²

Electro-magnetic restart

Restart activated by solenoids (operating voltage 24 V D.C.) which operate the reversal mechanism

Roller style load carrier designed to accomodate loads and twisting forces (dimensions upon request)

Customer Specific Special Features

Х

Adapter (twist-free coupling see page 23) Intermediate support bracket Heavy duty steady bar Drive motor Wipers

Special paint finish Anti-corrosion protection Double bearing support Special pitch Noise dampening Sequence control etc.

1. Shaft Material

1.1. Basic Requirements

Uhing Linear Drives should only be used in conjunction with steel shafts manufactured from induction surface hardened, ground and finished bar of the following quality, minimum:

- surface hardness: 50 HRC

- tolerance on diameter: h6

out of roundness: maximum one half of the diameter variation permitted by ISO tolerance h6
true running tolerance (DIN ISO 1101): ≤ 0.1 mm/m

1.2. Uhing Precision Shaft

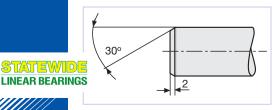
Standard: Material Cf 53,

Mat.-Nr. 1.1213 induction surface hardened, 60-64 HRC

Rust resistant:

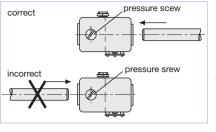
Material X 40 Cr 13, Mat.-Nr. 1.4034 induction surface hardened, 51-55 HRC

Rust and acid resistant: Material X 90 CrMoV 18 Mat.-Nr. 1.4112 induction surface hardened, 52-56 HRC


- all ground and superfinished
- surface roughness: mean value (DIN 4768 T.1) R₁: ≤ 0.35 μm
- tolerance on diameter: h6
- out of roundness: maximum one half of the diameter variation per mitted by ISO tolerance h6
 true running tolerance (DIN ISO
- 1101): $\leq 0.1 \text{ mm/m}$

1.3. Uhing Precision Shafts with Enhanced True Running Tolerance

Available in the above styles, but - true running tolerance (DIN ISO 1101): \leq 0.03 mm/m

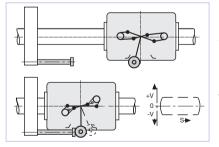

1.4. Leading End Chamfer

The leading end of the shaft should be chamfered to avoid damage to the Rolling Rings when screwing the unit onto the shaft.

The following method should be followed to facilitate the screwing of the shaft into the unit:

For units not having a pressure screw (KI, RGK and types RG 4-15/20/22/30-2) the entry side for the shaft is not specified.

2. Shaft Rotation

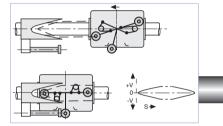

The mechanical reversal of the Rolling Ring Drive is related to the direction of shaft rotation. It will operate only when the rotation is as specified in the order (except for feature **D** and **RGK-types**).

When changing the direction of rotation, the pitch symmetry must be checked and adjusted if necessary (see Operating Instructions 05e).

3. Reversal

3.1. Instantaneous Reversal (Feature M)

Mode of operation: on making contact with a traverse stroke limiting endstop, the torsion springs in the reversal mechanism charged, trigger and fire the reversal once the throwover position has been reached.


For the reversal mechanism to operate, a minimum distance of travel equivalent approximately to the diameter of the shaft (dependent of the pitch setting) is required. The reversal time is also pitch related (see Fig. 2, page 16). Consequently, as the pitch is increased, there is a slight increase in the traverse stroke length (and a decrease if the pitch is reduced).

Differences in the stroke length also result when the speed of a unit, the pitch of which remains unaltered, is varied by significantly changing the shaft speed. Drive speed increases = increase in length of stroke,

Drive speed decreases = decrease in length of stroke.

3.2. Reversal Slowdown (Feature V)

Mode of operation: just prior to the reversal point an additional lever, which terminates in a contact bearing, makes contact with a V-shaped slowdown cam which causes it to swivel. This swivel action serves to reduce the unit's pitch as it approaches the reversal point such that the instantaneous reversal which follows is at a greatly reduced traverse speed.

As a result of the reversal slowdown, the forces exerted on the unit through the reversal are reduced, and high traverse speeds, without slip, are possible.

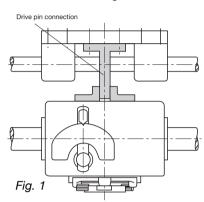
The reversal slowdown is predominantly distance related and changes in pitch do not effect the length of traverse stroke.

4. Pitch Setting

The pitch is the distance travelled per revolution of the shaft. With a Uhing Rolling Ring Drive, this is variable between nearly zero and a maximum specified value. The pitch can be set either when the unit is in motion or stationary.

The following pitch setting possibilities are available:

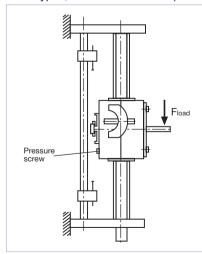
Kinemax and RGK: self retaining knob for infinite variability.


Feature C: 100/50 pitch selection scale covering the full pitch range. **Feature S:** Set screws for the infinitely variable setting of the pitch in each direction.

Feature Z: Worm gear drive for infinitely variable pitch setting. Remote control from one of the end bracket positions possible.

Note: With the exception of **S** type units, the pitch is generally set to be the same for both directions of travel. The difference in pitch in the two directions (symmetry) is factory set not to exceed 1%, for RGK-types not to exceed 2%.

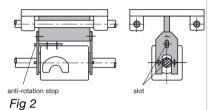
5. Separately Carried Additional Loads


If Rolling Ring Drives are used to move separately carried masses, allowance should be made in the coupling to compensate for any misalignment between the drive shaft and the carriage.

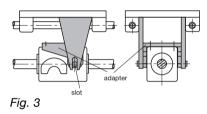
It should be additionally ensured that the distance between the point of connection and the unit is as short as possible, as twisting moments affect the thrust produced.

6. Vertical Applications

Attention should be given to the direction of the applied load and the position of the pressure setting screw so as to avoid a drop in thrust efficiency (except with KI 3-15-6, RGK-types, RG 4-15/20/22/30-2).



In the arrangement illustrated, there is an increase in thrust when unit is moving up the shaft.

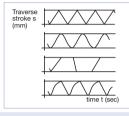

In applications using units with a free-movement-lever, care must be taken before its operation to ensure that the load can not drop in an uncontrolled way - injury could result.

Optimum couplings are twist-free as shown in Fig. 2 and 3.

Coupling connection at end of unit

Coupling connection at side of unit

7. Stopping on a Rotating Shaft


Rolling Ring Drives fitted with slowdown cams (type V) or a control lever (H or K) can, with appropriate control, be brought to a standstill (pitch setting "0") without the need to stop the shaft. This could be necessary if the drive is being used as a feed mechanism and is required to wait for a start signal at one or both ends of its traverse stroke

Intermediate stop positions between the end stop positions are also possible. If positional accuracy in excess of \pm 0.5 mm is acceptable, slowdown cams are adequate for the purpose. Otherwise, if accuracy better than \pm 0.5 mm is sought, a control lever should be used.

To protect the condition of the shaft, we recommend that the drive to the shaft be switched out if the standstill period exceeds 5 sec. at full rated thrust. The standstill time can be extended if the shaft speed is low or the thrust is reduced. Please refer related enquiries to the supplier.

8. Traversing Characteristics

By using a lever, the end of which is in the form of a roll which makes contact with cams which are arranged along the length of the traverse stroke, the pitch - and with it the speed - can be matched to the most varied requirements, the distances travelled being exactly repeatable.

9. Synchronization of Processes

Drives fittet with set screws (type **S**) offer the possibility of exactly relating the speed to that of already existing processes, e.g. synchronization of a travelling cutting head in cutting operations involving continuously fed materials. If the Uhing shaft and the material feed have a common drive, synchronization is maintained even if the material throughout speed varies.

10. Operating Temperature

Suitable for a temperature range of -10° to $+80^{\circ}$ C (RGK to $+70^{\circ}$ C). Special styles available for other temperatures on request.

11. Maintenance

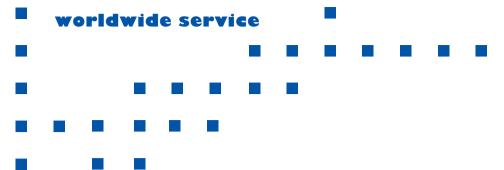
Shaft: MoS2 free ballbearing greases can be used, e.g. SKF Alfalub LGMT, Shell Alvania R2 or G2 Esso Beacon 2.

Procedure: Clean the shaft and spread the grease with a rag thinly as possible.

Unit: Lubricate the reversal mechanism, particularly the springs, with high viscosity machine oil (SAE 90). RGK is maintanance free.

Frequency: Monthly.

shorter intervals are recommended e.g.


- where a unit is required to be stationary on a rotating shaft
- it is working in shifts
- where it operates under extremly dusty conditions
- at temperatures over 80° C

5

The addresses of our agencies are available in the Internet: www.uhing.com

> Joachim Uhing KG GmbH & Co. Kieler Straße 23 24247 Mielkendorf Phone +49 (0) 4347 - 906-0 Fax +49 (0) 4347 - 906-40 e-mail: sales@uhing.com www.uhing.com Germany

DE

R BEARINGS

