

Rack-toothed Rail Type LM Guide Model

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

As the top face of the LM block is inclined, a clearance is eliminated and an appropriate preload is applied simply by securing the LM block with mounting bolts.

Model GSR-R is based on model GSR, but has rack teeth on the LM rail. This facilitates the design and assembly of drive mechanisms.

Reduced machining and assembly costs

The single-piece structure integrating the LM rail (linear guide) and rack (drive) reduces labor and time for machining the rack mounting surface and assembling and adjusting the guide system, thus to achieve significant cost reduction.

Easy designing

The travel distance per turn of the pinion is specified by the integer value. This makes it easy to calculate the travel distance per pulse when the LM Guide is used in combination with a stepping motor or servomotor.

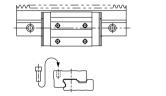
Space saving

Since the LM rail has rack teeth, the machine size can be reduced.

2 381 Rack-toothed Rail Type LM Guide Model GSR-R

Long stroke

The end faces of the LM rail are machined for connected use. To obtain a long stroke, simply connect LM rails of the standard length.

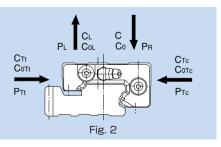

High durability

The rack tooth has a width equal to the LM rail height, the rack uses high-grade steel with proven performance and the teeth are heat-treated, thereby to ensure high durability.

Type and Features

Model GSR-R (with a rack-teethed LM rail)

Since the thrust load on the pinion shaft can be kept low due to rack-pinion meshing, it is easy to design systems with pinion shaft bearings and tables that are not so rigid.


Rated Loads in All Directions

Model GSR-R is capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

The basic load ratings indicate the values in the radial direction in Fig. 2, and their actual values are provided in the dimensional table for GSR-R. The values in the radial direction, tensile lateral direction and compressive lateral direction are obtained from table 1.

Table 1	Basic Load	Ratings	of Model	GSR-R in	All Directions
---------	------------	---------	----------	----------	----------------

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse-radial direction	CL=0.93C	C _{0L} =0.90C ₀
Tensile lateral direction	Cn=0.84C	Cott=0.78Co
Compressive lateral direction	C _{Tc} =0.93C	C _{0Tc} =0.90C ₀

Equivalent Load

When the LM block of model GSR-R receives loads in the radial, tensile lateral, reverseradial and compressive lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{X} \cdot \mathbf{P}_{R} + \mathbf{Y} \cdot \mathbf{P}_{Tt}$ $\mathbf{P}_{E} = \mathbf{P}_{L} + \mathbf{P}_{Tc}$

where

PE	:Equivalent load	(N)
	 Radial direction 	
	 Reverse-radial direction 	
	 Tensile lateral direction 	
	 Compressive lateral direct 	tion
PR	Radial load	(N)
P∟	Reverse-radial load	(N)
PTt	Tensile lateral load	(N)
PTc	Compressive lateral load	(N)
X/Y axes	:Equivalent factor (see tabl	e 2)

Options

Dust Prevention Accessories

까내서 offers various dust prevention accessories for model GSR-R.

When a dust prevention accessory is required, specify the desired item with the corresponding symbol provided in table 3 (for details of dust prevention accessories, see page a-24).

For supported model numbers for dust prevention accessories and overall LM block length with dust prevention accessories attached (dimension L), see page a-391.

Symbol	Dust prevention accessory			
UU	UU With end seal			
SS	SS With end seal + side seal			
DD	With double seals + side seal			
ZZ	ZZ With end seal + side seal + metal scraper			
KK	KK With double seals + side seal + metal scraper			

Table 3 Symbols of Dust Prevention Accessories for Model GSR-R

Table 2 Equivalent Factor of Model GSR-R (When radial and tensile lateral loads are applied)

PE	Х	Y
Equivalent load in radial direction	1	1.28
Equivalent load in tensile lateral direction	0.781	1

For the maximum seal resistance value per LM block when a lubricant is applied on seals GSR-R…UU, refer to the corresponding value provided in table 4. Table 4 Maximum Seal Resistance Value of Seals GSR-R…UU

	Unit. N
Model No.	Seal resistance value
GSR 25-R	4.4
GSR 30-R	6.3
GSR 35-R	7.6

Dedicated Cap C for LM Rail Mounting Holes

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign matter, they may enter the LM block structure. Entrance of such foreign matter can be prevented by covering each LM rail mounting hole with the dedicated cap so that the top of the mounting holes is on the same level as the LM rail top face.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable.

When placing an order, specify the desired cap type with the corresponding cap number indicated in table 5.

For the procedure for mounting the cap, see page a-22.

Table 5 Major Dimensions of Dedicated Cap C

Model	Cap C	Bolt	Major dimensions n	
No.	model No.	used	D	Н
GSR 25-R	C 6	M 6	11.4	2.7
GSR 30-R	C 8	M 8	14.4	3.7
GSR 35-R	C10	M10	18.0	3.7

Dedicated Cap C

Rack and Pinion

Joining two or more rails

The end faces of the rack-toothed LM rail are machined so that a clearance is left after assembly in order to facilitate the assembly. Use of a special jig as shown in Fig. 3 will make the connection easier.

($\ensuremath{\mathbb{THK}}$ also offers the rack-aligning jig.)

Reworking the pinion hole

Only the teeth of the reworkable pinion-holediameter type (type C) are heat-treated. The hole and keyway can therefore be reworked by the user to the desired diameter and shape.

When reworking the pinion hole, be sure to take the following into account.

The material of the reworkable hole-diameter type (type C): S45C

- When chucking the teeth of a reworkable hole-diameter type, use a jaw scroll chuck or the like to maintain the tooth profile.
- ② The pinion is produced using the center of the hole as a reference point. The center of the hole should therefore be used as a reference point when the pinion is aligned. When checking the pinion run-out, refer to the boss sides.
- ③ Keep the reworked hole-diameter within roughly 60 to 70% of the boss diameter.

Lubricating the rack and pinion

To ensure smooth sliding on tooth surfaces and prevent wear, the teeth should be provided with a lubricant.

*Use a lubricant of the same type as that contained in the LM Guide.

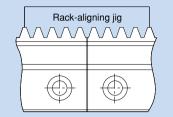
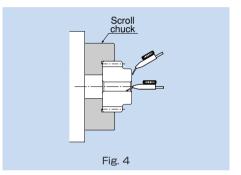



Fig. 3. Rack Connection Method

Checking strength

The strength of the assembled rack and pinion must be checked in advance.

- ① Calculated the maximum thrust acting on the pinion.
- ② Divide the permissible power-transmission capacity of the pinion to be used (table 6) by an overload factor (table 7).
- ③ By comparing the thrust acting on the pinion obtained in step 1 with the pinion power-transmission capacity obtained in step 2, make sure the applied thrust does not exceed the permissible power-transmission capacity.

[Example of calculation]

Model GSR-R is used in a horizontal conveyance system receiving a medium impact (assuming external load to be zero).

Conditions

Subject model No. (pinion)	GP6-20A
Mass (table + workpiece)	m=100kg
Speed	v=1 m/s
Acceleration/deceleration time	T1=0.1 s

Consideration

1) Calculating the maximum thrust

Calculated the thrust during acceleration/deceleration.

Fmax =
$$m \cdot \frac{v}{T_1} = 1.00 \text{kN}$$

② Permissible power-transmission capacity of the pinion

$$Pmax = \frac{permissible power-transmission capacity (see table 6)}{overload factor (see table 7)} = \frac{2.33}{1.25}$$

- =1.86kN
- ③ Comparison between the maximum thrust and the permissible powertransmission capacity of the pinion Fmax<Pmax</p>

Therefore, it is judged that the subject model number can be used.

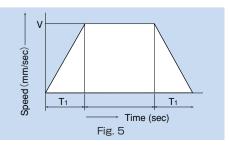
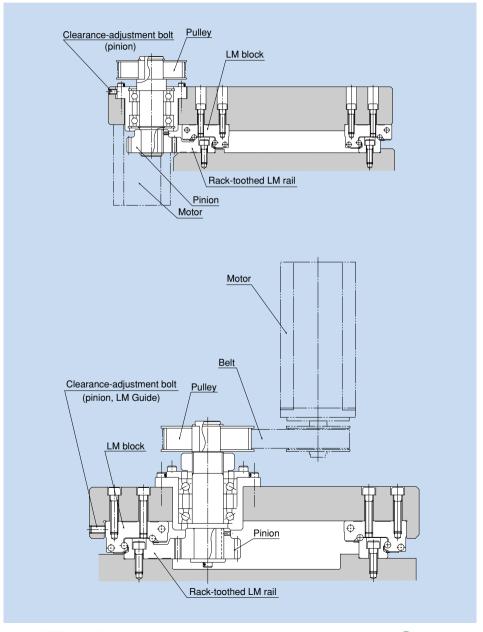

		Unit: kN
Model No.	Permissible power-trans- mission capacity	Supported model
GP 6-20A	2.33	
GP 6-20C	2.05	
GP 6-25A	2.73	GSR 25-R
GP 6-25C	2.23	
GP 8-20A	3.58	
GP 8-20C	3.15	GSR 30-R
GP 8-25A	4.19	GSR 30-R
GP 8-25C	3.42	
GP10-20A	5.19	
GP10-20C	4.57	
GP10-25A	6.06	GSR 35-R
GP10-25C	4.96	

Table 6 Permissible Power-transmission Capacity

Table 7 Overload Factor

	Impact from the prime mover	Impact from the driven machine			
		Uniform load	Medium impact	Large impact	
	Uniform load (prime mover, turbine, hydraulic motor, etc.)	1.0	1.25	1.75	

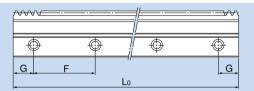
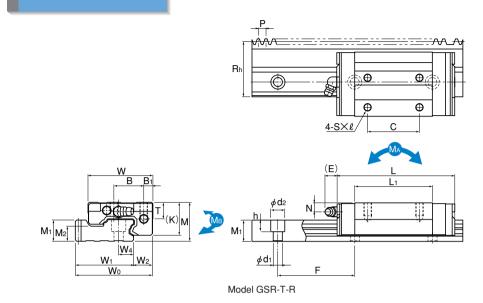


• Example of Assembling Model GSR-R with the Table

Standard Length of the LM Rail

Table 8 shows the standard LM rail lengths of model GSR-R variations.

Since both end faces of the LM rail of model GSR-R are machined, it can be joined with another rail without additional machining.

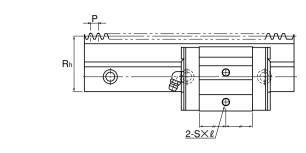

Table 8 Standard Length of the LM Rail for Model GSR-R

	Table 8 Standard Length of the LM Rail for Model GSR-R Unit:					Unit: mm
Model No.	GSR	25-R	GSR 30-R		GSR 35-R	
Standard LM rail length (L ^o)	1500	2004	1504	2000	1500	2000
Standard pitch F	60	60	80	80	80	80
G	30	42	32	40	30	40

Models GSR-R

(E)

1 1

 ϕd_1

Unit: mm	

Model No.		Rack			External dimensions					LM block dimensions						LM rail dimensions					Basic load rating		Static permissible moment kN-m*		Ma	iss								
		rence pitch	h	Pitch line	Height	Width		Length	1									Grease	N	Width			Height	Pitch			С	Co	N	A	N	lв	LM block	LM rail
		P	Module	Rh	М	W	Wo	L	Bı	в	С	S×ℓ	Lı	Т	К	N	E	nipple		W۱	W2	W4	Мı	F	M2	$d_1 \times d_2 \times h$	kN	kN	1 block	2 blocks in close contact	1 block	2 blocks in close contact	kg	kg/m
GSR 25T GSR 25V		6	1.91	43	30	50	59.91	88 69	7	23	40	M6×10	60.2 41.2	12.7	25.5	7	12	B-M6F	4	44.91	15	11.5	16.5	60	11.5	7×11×9	13.5 10.29	-	0.177 0.0858		0.152 0.0742		0.5 0.29	4.7
GSR 30T	-R	8	2.55	48	33	57	67.05	103	8	26	45	M8×12	70.3	14.6	28.5	7	12	B-M6F	ł	50.55	16.5	14	19	80	12	9×14×12	18.8	25.9	0.282	1.54	0.243	1.32	0.6	5.9
GSR 35T	-R	10	3.18	57	38	68	80.18	117	9	32	50	M8×15	80.3	15.6	32.5	8	12	B-M6F		60.18	20	17	22	80	14.5	11×17.5×14	25.1	33.8	0.421	2.28	0.362	1.96	1	8.1

Ē

LINEAR BEARINGS

Note) A special type with a module pitch is also available. Contact 7771K for details. For checking the pinion strength, see pages a-385.

Note) A moment in the direction MC can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction MC is omitted here.

Static permissible moment* 1 block: static permissible moment value with 1 LM block 2 blocks: static permissible moment value with 2 blocks closely con-

tacting with each other

ᆱᄫᄣ

Single-rail LM Guide

a-388

GSR25T 2 UU +5000L H R T 2 3 5 6 7 1 4

Standard Length and Maximum Length of the LM Rail P. a-387

Model number 2 No. of LM blocks 3 Dust prevention accessory symbol (see page a-382) 4 LM rail length (in mm) 5 Accuracy symbol (see page a-44) 6 Symbol for rack-toothed LM rail type 7Symbol for connected use**

**For combinations of lengths when rails are connected, contact THK

(Note) This model number indicates that a single-rail unit constitutes one set.

2 Dust prevention accessory symbol

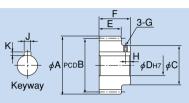
1 Model number

(see page a-382)

GSR25-2004L H R Model number coding Rack-toothed LM rail

1 2

Accuracy symbol (see page a-44) 2 R: Symbol for rack-toothed LM rail type

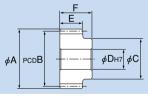

a-389

9

Pinion

Pinion Type A for the Rack

Keyway type


Unit: mm

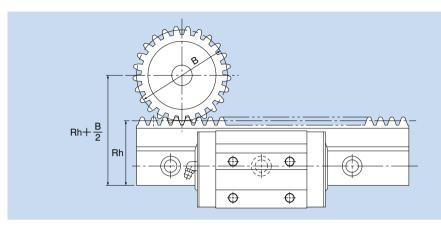
Model No.	Pitch	No. of teeth	Tip circle diameter A	Meshing PCD B	Boss diameter C	Hole diameter D	Tooth width E	Total length F	G	Н	Keyway J×K	Supported model	
GP 6-20A	6	20	42.9	39	30	18	16 5	.5 24.5	M3	4	6×2.8	GSR 25-R	
GP 6-25A	0	25	51.9	48	35	18	10.5				0/2.0	001120-11	
GP 8-20A	8	20	57.1	52	40	20	19	26	M3	5	8×3.3	GSR 30-R	
GP 8-25A	°	25	69.1	64	40	20	15	20	M4	5	0^3.3	GOR 30-R	
GP10-20A	10	20	70.4	64	45	25	-22 30 N	20	M4	5	8×3.3	GSR 35-R	
GP10-25A		25	86.4	80	60	25		1014	5	10×3.3	USN 33-N		

Note 1: When making an order, specify the corresponding model number from the table. Note 2: Non-standard (e.g., number of teeth) types of pinion are also available. Contact い兄以 for details.

Pinion Type C for the Rack

Reworkable hole-diameter type

Unit: mm Hole Tooth Boss Total No. of Tip circle diameter Meshing PCD Supported diameter diameter length width Model No. Pitch teeth model А В С D Е F GP 6-20C 42.9 39 30 24.5 20 12 16.5 **GSR 25-R** 6 GP 6-25C 25 51.9 48 35 15 24.5 GP 8-20C 57.1 40 18 20 52 26 19 **GSR 30-R** 8 GP 8-25C 25 26 69.1 64 40 18 70.4 GP10-20C 20 64 45 18 30 10 22 **GSR 35-R** 25 86.4 80 60 18 30 GP10-25C


Note 1: When making an order, specify the corresponding model number from the table.

Note 2: Non-standard (e.g., number of teeth) types of pinion are also available. Contact 证光坛 for details.

Dimensions When the LM Rail Is Used in Combination with a Pinion

Unit: mm

GSR model No.	Pinion model No.	LM rail pitch line height Rh	Pinion meshing PCD B	Rh+B/2
	GP 6-20A		39	62.5
GSR 25-R	GP 6-20C	43		02.0
031123-11	GP 6-25A	45	48	67
	GP 6-25C		40	07
	GP 8-20A		52	74
GSR 30-R	GP 8-20C	48	52	74
0311 30-11	GP 8-25A	40	64	80
	GP 8-25C		04	80
	GP 10-20A		64	89
GSR 35-R	GP 10-20C	57	04	09
001 00-0	GP 10-25A	57	80	97
	GP 10-25C		00	51

Overall LM Block Length with Options

Overall LM Block Length (Dimension L) of Model GSR-R with a Dust Prevention Accessory Attached

Model No.	UU	SS	DD	ZZ	KK
GSR 25T-R	88	88	95	91.6	98.6
GSR 25V-R	69	69	76	72.6	79.6
GSR 30T-R	103	103	110.6	107.2	114.8
GSR 35T-R	117	117	124.6	121.2	128.8

